SQL之SQL优化

文章目录

  • 一、插入数据优化
    • insert优化
    • 大批量插入数据
  • 二、主键优化
    • 数据组织方式
    • ·页分裂
    • ·页合并
    • 主键设计原则
    • 三、order by优化
  • 四、Group By 优化
  • 五、limit优化
  • 六、count优化
    • count的几种用法
  • 七、update优化
  • 总结


一、插入数据优化

insert优化

insert into tb_test values(1, 'tom');
insert into tb_test values(2, 'cat');
insert into tb_test values(3,"jerry');

批量插入

lnsert into tb_test values(1, 'Tom').(2,'Cat'),(3,"Jerry');

手动提交事务

start transaction;
insert into tb_test walues(1,'Tom'),(2,'Cat").(3,'"Jerry');
insert into tb_test values(4,'Tom').(5,'Cat').(6,"Jerry');
insert into tb_test values(7,'Ton').(8,'"Cat').(9,"]erry');
commit;

主键顺序插入

主键乱序插入: 8 1 9 2 1 8 8 2 4 1 5 8 9 5 7 3
主键顺序插入: 1 2 3 4 5 7 8 9 1 5 2 1 8 8 8 9

大批量插入数据

如果一次性需要插入大批量数据,使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。操作如下:
SQL之SQL优化_第1张图片

#客户端连接服务端时,加上参数--local-infile
mysql --local-infile -u root -p
#设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;
#执行load指令将准备好的数据,加载到表结构中
load data local infile '/root/sql1.log' into table 'tb_user' fields terminated by ',' lines terminated by '\n';

主键顺序插入性能高于乱序插入

二、主键优化

数据组织方式

在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(index organized table IOT)。
SQL之SQL优化_第2张图片

·页分裂

页可以为空,也可以填充一半,也可以填充100%。每个页包含了2-N行数据(如果一行数据多大,会行溢出),根据主键排列。
主键顺序插入
SQL之SQL优化_第3张图片主键乱序插入
SQL之SQL优化_第4张图片SQL之SQL优化_第5张图片

·页合并

当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记(flaged)为删除并且它的空间变得允许被其他记录声明使用。
当页中删除的记录达到MERGE_THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的页(前或后)看看是否可以将两个页合并以优化空间使用。
在这里插入图片描述SQL之SQL优化_第6张图片

知识小贴士:
MERGE_THRESHOLD:合并页的阈值,可以自己设置,在创建表或者创建索引时指定。

主键设计原则

满足业务需求的情况下,尽量降低主键的长度。
插入数据时,尽量选择顺序插入,选择使用AUTO_INCREMENT自增主键。
尽量不要使用UUID做主键或者是其他自然主键,如身份证号。
业务操作时,避免对主键的修改。

SQL之SQL优化_第7张图片

三、order by优化

Using filesort :通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sort buffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫FileSort 排序。
2.Using index:通过有序索引顺序扫描直接返回有序数据,这种情况即为using
index,不需要额外排序,操作效率高。


#没有创建索引时,根据age, phone进行排序
explain select id,age,phone from tb_user order by age , phone;
#创建索引
create index idx_user_age_phone_aa on tb_user(age,phone);
#创建索引后,根据age, phone进行升序排序
explain select id,age,phone from tb_user order by age , phone;
#创建索引后,根据age, phone进行降序排序
explain select id,age,phone from tb_user order by age desc , 
phone desc ;
#根据age, phone进行降序一个升序,一个降序
explain select id,age,phone from tb_user order by age asc , phone desc;
#创建索引
create index idx_user_age_phone_ad on tb_user(age asc ,
phone desc);
#根据age, phone进行降序一个升序,一个降序
explain select id,age,phone from tb_user order by age asc , 
phone desc;

SQL之SQL优化_第8张图片

  • 根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。
  • 尽量使用覆盖索引。
  • 多字段排序,一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)。
  • 如果不可避免的出现filesort,大数据量排序时,可以适当增大排序缓冲区大小 sort_buffer_size(默认256k)。

四、Group By 优化

#删除掉目前的联合索引 idx_user_pro_age_sta
drop index idx_user_pro_age_sta on tb_user;
#执行分组操作,根据profession字段分组
explain select profession , count(*) from tb_user group by profession;
*#创建索引*
Create index idx_user_pro_age_sta on tb_user(profession , age , status);
#执行分组操作,根据profession字段分组
explain select profession , count(*) from tb_user group by profession;
#执行分组操作,根据profession字段分组
explain select profession , count(*) from tb_user group by profession , age;
  • 在分组操作时,可以通过索引来提高效率。
  • 分组操作时,索引的使用也是满足最左前缀法则的。

SQL之SQL优化_第9张图片在这里插入图片描述创建索引
在这里插入图片描述在这里插入图片描述SQL之SQL优化_第10张图片SQL之SQL优化_第11张图片

五、limit优化

一个常见又非常头疼的问题就是limit 2000000,10,此时需要MySQL排序前2000010记录,仅仅返回2000000 - 2000010的记录,其他记录丢弃,查询排序的代价非常大。

优化思路:一般分页查询时,通过创建覆盖索引能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化。
在这里插入图片描述

explain select *from tb_sku t , (select id from tb_sku order by
 id limit 2000000,10) a where tid = a.id;

六、count优化

explain select count(*) from tb_user ;
  • MyISAM引擎把一个表的总行数存在了磁盘上,因此执行count(*)的时候会直接返回这个数,效率很高;
  • InnoDB引擎就麻烦了,它执行count(*)的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。
    优化思路:自己计数。

count的几种用法

count()是一个聚合函数,对于返回的结果集,一行行地判断,如果count 函数的参数不是NULL,累计值就加1,否则不加,最后返回累计值。
用法:count (* ) 、count(主键)、count(字段)、count ( 1)

  1. count(主键)

InnoDB引擎会遍历整张表,把每一行的主键id值都取出来,返回给服务层。服务层拿到主键后,直接按行进行累加(主键不可能为null)。

  1. count(字段)

没有not null约束:InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,服务层判断是否为null不为null,计数累加。
有not null约束: InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,直接按行进行累加。

  1. count ( 1)

InnoDB引擎遍历整张表,但不取值。服务层对于返回的每一行,放一个数字“1”进去,直接按行进行累加。

  1. count (* )

InnoDB引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接按行进行累加。

按照效率排序的话,count(字段)<count(主键id)<count(1) = count(*),
所以尽量使用count(*)

七、update优化

update student set no ='2000100100'where id = 1;
update student set no = '2000100105'where name ='韦一笑';

InnoDB的行锁是针对索引加的锁,不是针对记录加的锁,并且该索引不能失效,否则会从行锁升级为表锁。


总结

SQL之SQL优化_第12张图片

你可能感兴趣的:(mysql,sql,数据库)