java多线程(四)---volatile内存语义及实现

移步java多线程系列文章

1 cpu术语的定义

术语 英文单词 术语描述
内存屏障 memory barriers 是一组处理器指令,用于实现内存操作的顺序限制
缓冲行 cache line 缓存中可以分配的最小存储单位。处理器填写缓存线时会加载整个缓存线,需要使用多个主内存读周期
原子操作 atomic operations 不可中断的一个或一系列操作
缓存行填充 cache line fill 当处理器识别到从内存中读取操作数是可缓存的,处理器读取整个缓存行到适当的缓存(L1,L2,L3或所有)
缓存命中 cache hit 如果进行高速缓存行填充操作的内存位置仍然是下次处理器访问的地址时,处理器从缓存中读取操作数,而不是从内存读取
写命中 write hit 当处理器将操作数写回到一个内存缓存的区域时,它首先会检查这个缓存的内存地址是否在缓存行中,如果存在一个有效的缓存行,则处理器将这个操作数写回到缓存,而不是写回到内存,这个操作被称为写命中
写缺失 write misses the cache 一个有效的缓存行被写入到不存在的内存区域

2. volatile的定义

  • Java语言规范第3版中对volatile的定义如下:

  • Java编程语言允许线程访问共享变量,为了确保共享变量能被准确和一致地更新,线程应该确保通过排他锁单独获得这个变量。Java语言提供了volatile,在某些情况下比锁要更加方便。如果一个字段被声明成volatile,Java线程内存模型确保所有线程看到这个变量的值是一致的。

  • 即使是64位的long型和double型变量,只要它是volatile变量,对该变量的读/写就具有原子性。如果是多个volatile操作或类似于volatile++这种复合操作,这些操作整体上不具原子性

  • volatile变量自身具有一下特性:
  • 可见性。对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入。
  • 原子性:对任意单个volatile变量的读/写具有原子性,但类似于volatile++这种复合操作不具有原子性。

3 volatile写-读的内存语义

  • volatile写的内存语义:当写一个volatile变量时,JMM会把该线程对应的本地内存中的共享变量值刷新到主内存
  • volatile读的内存语义:当读一个volatile变量时,JMM会把该线程对应的本地内存置为无效。线程接下来将从主内存中读取共享变量
  • volatile重排序规。


    volatile重排序规则表.jpg

    从上表可以看出

  • 当第二个操作是volatile写时,不管第一个操作是什么,都不能重排序。这个规则确保volatile写之前的操作不会被编译器重排序到volatile写之后。
  • 当第一个操作是volatile读时,不管第二个操作是什么,都不能重排序。这个规则确保volatile读之后的操作不会被编译器重排序到volatile读之前。
  • 当第一个操作是volatile写,第二个操作是volatile读时,不能重排序。

4 volatile 内存语义的实现

  • 为了实现volatile的内存语义,编译器在生成字节码时,会在指令序列中插入内存屏障来禁止特定类型的处理器重排序。
  • 对于编译器来说,发现一个最优布置来最小化插入屏障的总数几乎不可能。

4.1 JMM采取保守策略

  • JMM采取保守策略。下面是基于保守策略的JMM内存屏障插入策略
  • 在每个volatile写操作的前面插入一个StoreStore屏障。
  • 在每个volatile写操作的后面插入一个StoreLoad屏障。
  • 在每个volatile读操作的后面插入一个LoadLoad屏障
  • 在每个volatile读操作的后面插入一个LoadStore屏障
  • 上述内存屏障插入策略非常保守,但它可以保证在任意处理器平台任意的程序中都能得到正确的volatile内存语义

4.2 volatile写插入内存屏障后生成的指令序列

qq_pic_merged_1533870644878.jpg
  • StoreStore屏障可以保证在volatile写之前,其前面的所有普通写操作已经对任意处理器可见了。这是因为StoreStore屏障将保障上面所有的普通写在volatile写之前刷新到主内存。
  • volatile写后面的StoreLoad屏障。此屏障的作用是避免volatile写与后面可能有的volatile读/写操作重排序。因为编译器常常无法准确判断在一个volatile写的后面是否需要插入一个StoreLoad屏障(比如,一个volatile写之后方法立即return)。
  • 为了保证能正确实现volatile的内存语义,JMM在采取了保守策略:在每个volatile写的后面,或者在每个volatile读的前面插入一个StoreLoad屏障。
  • 从整体执行效率的角度考虑,JMM最终选择了在每个volatile写的后面插入一个StoreLoad屏障。因为volatile写-读内存语义的常见使用模式是:一个写线程写volatile变量,多个读线程读同一个volatile变量
  • 当读线程的数量大大超过写线程时,选择在volatile写之后插入StoreLoad屏障将带来可观的执行效率的提升。从这里可以看到JMM在实现上的一个特点:首先确保正确性,然后再去追求执行效率。

4.3 volatile读插入内存屏障后生成的指令序列

volatile读插入内存屏障后生成的指令序列.jpg
  • LoadLoad屏障用来禁止处理器把上面的volatile读与下面的普通读重排序。
  • LoadStore屏障用来禁止处理器把上面的volatile读与下面的普通写重排序。
  • 在实际执行时,只要不改变volatile写-读的内存语义,编译器可以根据具体情况省略不必要的屏障。

4.4示例

class VolatileBarrierExample {
       int a;
       volatile int v1 = 1;
       volatile int v2 = 2;
       void readAndWrite() {
           int i = v1;      // 第一个volatile读
           int j = v2;       // 第二个volatile读
           a = i + j;         // 普通写
           v1 = i + 1;       // 第一个volatile写
           v2 = j * 2;       // 第二个 volatile写
       }
       …               // 其他方法
}

针对readAndWrite()方法,编译器在生成字节码时可以做如下的优化。


qq_pic_merged_1533871374155.jpg
  • 注意,最后的StoreLoad屏障不能省略。因为第二个volatile写之后,方法立即return。此时编译器可能无法准确断定后面是否会有volatile读或写,为了安全起见,编译器通常会在这里插入一个StoreLoad屏障。
  • 上面的优化针对任意处理器平台

4.5 不同的处理器(X86)

  • 由于不同的处理器有不同“松紧度”的处理器内存模型,内存屏障的插入还可以根据具体的处理器内存模型继续优化。
  • 以X86处理器为例,除最后的StoreLoad屏障外,其他的屏障都会被省略。
  • X86处理器仅会对写-读操作做重排序。X86不会对读-读、读-写和写-写操作做重排序,因此在X86处理器中会省略掉这3种操作类型对应的内存屏障。
  • 在X86中,JMM仅需在volatile写后面插入一个StoreLoad屏障即可正确实现volatile写-读的内存语义。这意味着在X86处理器中,volatile写的开销比volatile读的开销会大很多(因为执行StoreLoad屏障开销会比较大)
qq_pic_merged_1533871668360.jpg

5 其他

  • 在JSR-133之前的旧Java内存模型中,虽然不允许volatile变量之间重排序,但旧的Java内存模型允许volatile变量与普通变量重排序。
  • JSR-133专家组决定增强volatile的内存语义:严格限制编译器和处理器对volatile变量与普通变量的重排序,确保volatile的写-读和锁的释放-获取具有相同的内存语义。从编译器重排序规则和处理器内存屏障插入策略来看,只要volatile变量与普通变量之间的重排序可能会破坏volatile的内存语义,这种重排序就会被编译器重排序规则和处理器内存屏障插入策略禁止。
  • 由于volatile仅仅保证对单个volatile变量的读/写具有原子性,而锁的互斥执行的特性可以确保对整个临界区代码的执行具有原子性。在功能上,锁比volatile更强大;在可伸缩性和执行性能上,volatile更有优势。

参考

《java并发编程的艺术》

你可能感兴趣的:(java多线程(四)---volatile内存语义及实现)