【Python4CFD】笔记step1-4

CFDpython - 12 steps to N-S equation

最近在等师兄数据,偶然发现github上有一个很有意思的项目,用python(其实是jupyter)学习CFD,借此机会来摸摸鱼,顺便记录一下做点笔记

00-前言

  1. 课程链接CFD Python, a.k.a. the 12 steps to Navier-Stokes
  2. 视频链接ME702-Youtube
  3. 需要的库环境:
ipywidgets==7.2.1
jupyter==1.0.0
numpy==1.14.3
matplotlib==2.2.2
scipy==1.1.0
sympy==1.1.1
  1. 前言部分主要介绍了python+numpy的简单应用,包括以下六个部分:

00-1 Libraries

  1. 这一部分就是介绍怎么安装库,个人建议用pycharm+anaconda
  2. 注意不要用from xxx import *
  3. linspace是一个很有用的函数,用来建立等距的行向量
# np.linspace
myarray = numpy.linspace(0, 5, 10)
# 0-5之间产生10个点
# array([ 0.        ,  0.55555556,  1.11111111,  1.66666667,  2.22222222,
#        2.77777778,  3.33333333,  3.88888889,  4.44444444,  5.        ])

00-2 Variables

  1. python无需像c一样声明变量的数据类型
  2. 但是要注意,整数/整数=浮点数(int/int=float)
a = 5        #a is an integer 5
b = 'five'   #b is a string of the word 'five'
c = 5.0      #c is a floating point 5  
#%%
type(a) # int
#%%
type(b) # str
#%%
type(c) # float

00-3 Whitespace in Python

  1. python中的语句关系由缩进来控制的,而不是像c一样的中括号
  2. 这个的话用的例子是loop

00-4 Slicing Arrays

  1. 切片,和c一样,从0开始,N-1结束
  2. 冒号表示从start到end-1
myvals = numpy.array([1, 2, 3, 4, 5])

myvals[0], myvals[4] # output:1,5

myvals[5] # output: error

myvals[0:3] # output:1 2 3

00-5 Assigning Array Variables

  1. 感觉像是python里面比较坑的机制了:引用机制,如果中途修改变量,会导致原变量也进行修改
  2. 这个时候需采用copy来解决
a1 = numpy.linspace(1,5,5) # a1=1 2 3 4 5

b = a1

b[3] = 17 # b = a1 = 1 2 3 17 5

a2 = numpy.linspace(1,5,5) # a1=1 2 3 4 5

c = a2.copy()

c[3] = 17 # a2=1 2 3 4 5; c=1 2 3 17 5

00-6 learn more

这一节学到个新东西,原来jupyter里面还可以展示youtube,下次试试能不能展示bilibili

from IPython.display import YouTubeVideo
# a short video about using NumPy arrays, from Enthought
YouTubeVideo('...')

01-Step 1: 1-D Linear Convection 一维线性对流方程

  1. 对于一维线性对流方程:
    ∂ u ∂ t + c ∂ u ∂ x = 0 \frac{\partial u}{\partial t}+c\frac{\partial u}{\partial x}=0 tu+cxu=0
  2. 其本质是一个双曲型偏微分方程,假设初值 u = u 0 u=u_0 u=u0根据特征线可以知道其解析解为:
    u = u 0 ( x ± c t ) u=u_0(x\pm ct) u=u0(x±ct)
  3. 该例子是对时间域采用向后一阶差分,对空间域采用向前一阶差分,通过有限差分法对方程进行离散:
    u i n + 1 − u i n Δ t + c u i n − u i − 1 n Δ x = 0 \frac{u_i^{n+1}-u_i^n}{\Delta t}+c \frac{u_i^n-u_{i-1}^n}{\Delta x}=0 Δtuin+1uin+cΔxuinui1n=0
    u i n + 1 = u i n − c Δ t Δ x ( u i n − u i − 1 n ) u_i^{n+1}=u_i^n-c \frac{\Delta t}{\Delta x}\left(u_i^n-u_{i-1}^n\right) uin+1=uincΔxΔt(uinui1n)
  4. 所有代码如下:
# Remember: comments in python are denoted by the pound sign
import numpy                       #here we load numpy
from matplotlib import pyplot      #here we load matplotlib
import time, sys                   #and load some utilities

#this makes matplotlib plots appear in the notebook (instead of a separate window)
%matplotlib inline   

# 绘制网格:空间节点有41个,时间节点为25个,可以理解为解域是一个41*25的均匀网格
nx = 41  # 加大这个值,会让结果更为精确(即加密网格,但不是所有方程都会精确)
dx = 2 / (nx-1)
nt = 25    #nt is the number of timesteps we want to calculate
dt = .025  #dt is the amount of time each timestep covers (delta t)
c = 1      #assume wavespeed of c = 1

# 设置初始条件:在x属于0.5-1的时候是2,其余时刻是1
u = numpy.ones(nx)      #numpy function ones()
u[int(.5 / dx):int(1 / dx + 1)] = 2  #setting u = 2 between 0.5 and 1 as per our I.C.s
pyplot.plot(numpy.linspace(0, 2, nx), u);

# 设置temp变量,用来表示上一时刻的值,即n时刻,最终计算n+1时刻的值
un = numpy.ones(nx) #initialize a temporary array

# 开始求解方程:原作者说,这种方式比较浪费资源,之后课程有更好的方式
for n in range(nt):  #loop for values of n from 0 to nt, so it will run nt times
    un = u.copy() ##copy the existing values of u into un
    for i in range(1, nx): 
        u[i] = un[i] - c * dt / dx * (un[i] - un[i-1])

pyplot.plot(numpy.linspace(0, 2, nx), u);
  1. 网格可以通过如下代码进行观察:
xx=numpy.linspace(0,2,nx)
tt=numpy.linspace(0,dt*nt,nt)

x,y=numpy.meshgrid(xx,tt,indexing='xy')
pyplot.scatter(x,y)

02-Step 2: Nonlinear Convection非线性对流方程

  1. 用u替换原来的c:
    ∂ u ∂ t + u ∂ u ∂ x = 0 \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0 tu+uxu=0
  2. 其有限差分形式为:
    u i n + 1 = u i n − u i n Δ t Δ x ( u i n − u i − 1 n ) u_i^{n+1} = u_i^n - u_i^n \frac{\Delta t}{\Delta x} (u_i^n - u_{i-1}^n) uin+1=uinuinΔxΔt(uinui1n)
  3. 此处仅需改变求解代码:
for n in range(nt):
    un = u.copy()
    for i in range(1, nx):
        u[i] = un[i] - un[i] * dt / dx * (un[i] - un[i-1]) 
  1. 这里结果其实很差,出现了数值振荡,因为markdown的原因就不贴图了

03-Convergence and the CFL Condition

  1. 这一节介绍收敛性和库朗数,作者说:“In my experience, CFD students love to make things blow up”还是很搞笑的
  2. 这里强烈推荐去看原jupyter notebook,作者用不同的网格数x来显示一维对流方程的结果,发现在nx=85的时候出现了数值振荡
  3. 库朗数:声波波速与单位网格移动速度之比,这个比值应该小于1,如果大于1,说明实际波速大于网格移动速度,那么网格无法完全计算声波各处的值,从而出现耗散
    σ = u Δ t Δ x ≤ σ max ⁡ \sigma = \frac{u \Delta t}{\Delta x} \leq \sigma_{\max} σ=ΔxuΔtσmax
  4. 可以将dt与dx绑定的形式来确保结果收敛:
import numpy
from matplotlib import pyplot

def linearconv(nx):
    dx = 2 / (nx - 1)
    nt = 20    #nt is the number of timesteps we want to calculate
    c = 1
    sigma = .5
    
    dt = sigma * dx

    u = numpy.ones(nx) 
    u[int(.5/dx):int(1 / dx + 1)] = 2

    un = numpy.ones(nx)

    for n in range(nt):  #iterate through time
        un = u.copy() ##copy the existing values of u into un
        for i in range(1, nx):
            u[i] = un[i] - c * dt / dx * (un[i] - un[i-1])
        
    pyplot.plot(numpy.linspace(0, 2, nx), u)
  1. 这里也正好解释了nx变大后,dx变小,从而导致库朗数变大,超过1之后就开始发散

04-Step 3: Diffusion Equation in 1-D一维扩散方程

  1. 一维扩散方程形式如下:
    ∂ u ∂ t = ν ∂ 2 u ∂ x 2 \frac{\partial u}{\partial t}= \nu \frac{\partial^2 u}{\partial x^2} tu=νx22u
  2. 二阶中心差分:现在扩散项进行泰勒展开,然后两者相加即可。

u i + 1 = u i + Δ x ∂ u ∂ x ∣ i + Δ x 2 2 ∂ 2 u ∂ x 2 ∣ i + Δ x 3 3 ! ∂ 3 u ∂ x 3 ∣ i + O ( Δ x 4 ) u_{i+1} = u_i + \Delta x \frac{\partial u}{\partial x}\bigg|_i + \frac{\Delta x^2}{2} \frac{\partial ^2 u}{\partial x^2}\bigg|_i + \frac{\Delta x^3}{3!} \frac{\partial ^3 u}{\partial x^3}\bigg|_i + O(\Delta x^4) ui+1=ui+Δxxu i+2Δx2x22u i+3!Δx3x33u i+O(Δx4)

u i − 1 = u i − Δ x ∂ u ∂ x ∣ i + Δ x 2 2 ∂ 2 u ∂ x 2 ∣ i − Δ x 3 3 ! ∂ 3 u ∂ x 3 ∣ i + O ( Δ x 4 ) u_{i-1} = u_i - \Delta x \frac{\partial u}{\partial x}\bigg|_i + \frac{\Delta x^2}{2} \frac{\partial ^2 u}{\partial x^2}\bigg|_i - \frac{\Delta x^3}{3!} \frac{\partial ^3 u}{\partial x^3}\bigg|_i + O(\Delta x^4) ui1=uiΔxxu i+2Δx2x22u i3!Δx3x33u i+O(Δx4)

u i + 1 + u i − 1 = 2 u i + Δ x 2 ∂ 2 u ∂ x 2 ∣ i + O ( Δ x 4 ) u_{i+1} + u_{i-1} = 2u_i+\Delta x^2 \frac{\partial ^2 u}{\partial x^2}\bigg|_i + O(\Delta x^4) ui+1+ui1=2ui+Δx2x22u i+O(Δx4)

∂ 2 u ∂ x 2 = u i + 1 − 2 u i + u i − 1 Δ x 2 + O ( Δ x 2 ) \frac{\partial ^2 u}{\partial x^2}=\frac{u_{i+1}-2u_{i}+u_{i-1}}{\Delta x^2} + O(\Delta x^2) x22u=Δx2ui+12ui+ui1+O(Δx2)
3. 同理,非稳态项采用一阶向前差分,扩散项采用二阶中心差分,最终得到:
u i n + 1 − u i n Δ t = ν u i + 1 n − 2 u i n + u i − 1 n Δ x 2 \frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=\nu\frac{u_{i+1}^{n}-2u_{i}^{n}+u_{i-1}^{n}}{\Delta x^2} Δtuin+1uin=νΔx2ui+1n2uin+ui1n

u i n + 1 = u i n + ν Δ t Δ x 2 ( u i + 1 n − 2 u i n + u i − 1 n ) u_{i}^{n+1}=u_{i}^{n}+\frac{\nu\Delta t}{\Delta x^2}(u_{i+1}^{n}-2u_{i}^{n}+u_{i-1}^{n}) uin+1=uin+Δx2νΔt(ui+1n2uin+ui1n)
4. 全部代码如下:

import numpy
from matplotlib import pyplot
%matplotlib inline

nx = 41
dx = 2 / (nx - 1)
nt = 20    #the number of timesteps we want to calculate
nu = 0.3   #the value of viscosity,粘性系数
sigma = .2 #sigma is a parameter, we'll learn more about it later
dt = sigma * dx**2 / nu # 这个时候库朗数变了,多了粘性项,具体看最终形式(v*dt/dx**2)

# 设置初始条件,同之前的step
u = numpy.ones(nx)
u[int(.5 / dx):int(1 / dx + 1)] = 2

# 存放前一时刻-n-时刻的速度值
un = numpy.ones(nx)

# 开始迭代
for n in range(nt):
    un = u.copy()
    for i in range(1, nx - 1):
        u[i] = un[i] + nu * dt / dx**2 * (un[i+1] - 2 * un[i] + un[i-1])
        # 这里nu * dt / dx**2===sigma
        
pyplot.plot(numpy.linspace(0, 2, nx), u);

05-Step 4: Burgers’ Equation

051-Burgers方程介绍

  1. 一维Burger’s Equation就是将以上两个简单对流扩散方程进行的叠加,方程形式如下:
    ∂ u ∂ t + u ∂ u ∂ x = ν ∂ 2 u ∂ x 2 \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial ^2u}{\partial x^2} tu+uxu=νx22u
  2. 同理,对非稳态项采用一阶向前差分,对对流项采用一阶向后差分,对扩散项采用二阶中心差分,离散后得到如下结果:
    u i n + 1 − u i n Δ t + u i n u i n − u i − 1 n Δ x = ν u i + 1 n − 2 u i n + u i − 1 n Δ x 2 \frac{u_i^{n+1}-u_i^n}{\Delta t} + u_i^n \frac{u_i^n - u_{i-1}^n}{\Delta x} = \nu \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2} Δtuin+1uin+uinΔxuinui1n=νΔx2ui+1n2uin+ui1n
    u i n + 1 = u i n − u i n Δ t Δ x ( u i n − u i − 1 n ) + ν Δ t Δ x 2 ( u i + 1 n − 2 u i n + u i − 1 n ) u_i^{n+1} = u_i^n - u_i^n \frac{\Delta t}{\Delta x} (u_i^n - u_{i-1}^n) + \nu \frac{\Delta t}{\Delta x^2}(u_{i+1}^n - 2u_i^n + u_{i-1}^n) uin+1=uinuinΔxΔt(uinui1n)+νΔx2Δt(ui+1n2uin+ui1n)
  3. 初始条件和边界条件这块儿我没懂:边界条件有点复杂,但是解析解是怎么确定的呢?
    • 初始条件长这样:
      u = − 2 ν ϕ ∂ ϕ ∂ x + 4 ϕ = exp ⁡ ( − x 2 4 ν ) + exp ⁡ ( − ( x − 2 π ) 2 4 ν ) \begin{align} u &= -\frac{2 \nu}{\phi} \frac{\partial \phi}{\partial x} + 4 \\ \phi &= \exp \left(\frac{-x^2}{4 \nu} \right) + \exp \left(\frac{-(x-2 \pi)^2}{4 \nu} \right) \end{align} uϕ=ϕ2νxϕ+4=exp(4νx2)+exp(4ν(x2π)2)
    • 解析解长这样:
      u = − 2 ν ϕ ∂ ϕ ∂ x + 4 ϕ = exp ⁡ ( − ( x − 4 t ) 2 4 ν ) + exp ⁡ ( − ( x − 4 t − 2 π ) 2 4 ν ) \begin{align} u &= -\frac{2 \nu}{\phi} \frac{\partial \phi}{\partial x} + 4 \\ \phi &= \exp \left(\frac{-(x-4t)^2}{4 \nu} \right) + \exp \left(\frac{-(x-4t-2 \pi)^2}{4 \nu} \right) \end{align} uϕ=ϕ2νxϕ+4=exp(4ν(x4t)2)+exp(4ν(x4t2π)2)
    • 边界条件为:周期性边界条件
      u ( 0 ) = u ( 2 π ) u(0) = u(2\pi) u(0)=u(2π)

052- Sympy

  1. sympy类似于Matlab中的symbolic,是一种符号表示的库
  2. 以下代码是将初始条件转换为符号函数,再通过sympy进行求导 ∂ ϕ ∂ x \frac{\partial \phi}{\partial x} xϕ:
import numpy 
import sympy

from sympy import init_printing # 用于输出打印
init_printing(use_latex=True)

# 用symbols来表示\phi
x, nu, t=sympy.symbols('x nu t')
phi = (sympy.exp(-(x - 4 * t)**2 / (4 * nu * (t + 1))) +
       sympy.exp(-(x - 4 * t - 2 * sympy.pi)**2 / (4 * nu * (t + 1))))

# 对x进行求导
phiprime = phi.diff(x)
print(phiprime)
# output
# -(-8*t + 2*x)*exp(-(-4*t + x)**2/(4*nu*(t + 1)))/(4*nu*(t + 1)) - (-8*t + 2*x - 4*pi)*exp(-(-4*t + x - 2*pi)**2/(4*nu*(t + 1)))/(4*nu*(t + 1))     
  1. Lambdify:将symbols函数转换为匿名函数,这样就可以通过输入输出值,来获取函数值
from sympy.utilities.lambdify import lambdify

u = -2 * nu * (phiprime / phi) + 4

ufunc = lambdify((t, x, nu), u)
print(ufunc(1, 4, 3))
# output: 3.49170664206

053-求解复杂初始条件+周期性边界条件的一维Burgers方程

  1. 有限差分解代码如下:(在前文sympy的基础上)
from matplotlib import pyplot
%matplotlib inline

###variable declarations
nx = 101
nt = 100
dx = 2 * numpy.pi / (nx - 1)
nu = .07
dt = dx * nu

x = numpy.linspace(0, 2 * numpy.pi, nx)
un = numpy.empty(nx)
t = 0

# 计算u
u = numpy.asarray([ufunc(t, x0, nu) for x0 in x])
u

# 画图
pyplot.figure(figsize=(11, 7), dpi=100)
pyplot.plot(x, u, marker='o', lw=2)
pyplot.xlim([0, 2 * numpy.pi])
pyplot.ylim([0, 10]);
  1. 方程再展示一下:
    u i n + 1 = u i n − u i n Δ t Δ x ( u i n − u i − 1 n ) + ν Δ t Δ x 2 ( u i + 1 n − 2 u i n + u i − 1 n ) u_i^{n+1} = u_i^n - u_i^n \frac{\Delta t}{\Delta x} (u_i^n - u_{i-1}^n) + \nu \frac{\Delta t}{\Delta x^2}(u_{i+1}^n - 2u_i^n + u_{i-1}^n) uin+1=uinuinΔxΔt(uinui1n)+νΔx2Δt(ui+1n2uin+ui1n)
  2. 周期性边界条件求解代码如下:
for n in range(nt):
    un = u.copy()

    # 计算1-N-1的结果
    for i in range(1, nx-1):
        u[i] = un[i] - un[i] * dt / dx *(un[i] - un[i-1]) + nu * dt / dx**2 *(un[i+1] - 2 * un[i] + un[i-1])

    # 计算边界结果
    # 对于i=0的计算结果,取u[-1]=u[0],即最后一个点的结果=第一个点的结果
    u[0] = un[0] - un[0] * dt / dx * (un[0] - un[-2]) + nu * dt / dx**2 *(un[1] - 2 * un[0] + un[-2])
    u[-1] = u[0]
        
u_analytical = numpy.asarray([ufunc(nt * dt, xi, nu) for xi in x])

    # 画图
    pyplot.figure(figsize=(11, 7), dpi=100)
    pyplot.plot(x,u, marker='o', lw=2, label='Computational')
    pyplot.plot(x, u_analytical, label='Analytical')
    pyplot.xlim([0, 2 * numpy.pi])
    pyplot.ylim([0, 10])
    pyplot.legend();

你可能感兴趣的:(CFD,python,numpy,CFD)