LIO-SAM代码解析——featureExtraction.cpp

目录

  • featureExtraction.cpp
    • 1. FeatureExtraction类
      • 1.1. laserCloudInfoHandler
        • 1.1.1. calculateSmoothness()
        • 1.1.2. markOccludedPoints()
        • 1.1.3. extractFeatures()
        • 1.1.4. publishFeatureCloud()

在这里插入图片描述传感器输入: IMU,Point Cloud, GPS(可选)
输出 : IMU 频率的odometry

imageProjection.cpp: 接受IMU,PointCloud以及IMU预积分输出的IMU odometry(系统刚初始化时没有IMU odometry)。

  • 主要功能:
    1. 基于IMU odometry得到系统的初始位姿
    2. 将点云投影到cv::mat中,做相应的预处理
    3. 对原始点云数据做运动补偿(点云的去畸变补偿在代码中只应用于旋转部分,注释掉了平移部分)

featureExtraction.cpp :接收来自imageProjection处理完的lidar帧数据,对应的点云是去畸变的,也就是在同一个坐标系下。对点云进行面点,角点特征的分类。

  • 主要功能:
    1. 提取点云边缘特征和面特征

mapOptimization.cpp:

  • 主要功能:
    1. 将提取到点云特征与地图中的边缘特征和面特征进行配准
    2. 配准后得到当前帧在地图中的位姿
    3. 图优化: 将lidar的帧间约束,回环的约束,(GPS因子)添加到因子图中

imuPreintegration.cpp:一开始并没有工作,只有收到lidar odometry后才会工作

  • 主要功能:
    1. 图优化:lidar odometry和IMU的帧间约束添加到因子图中
    2. 估计IMU零偏

featureExtraction.cpp

主函数只存在1个类FeatureExtraction FE

1. FeatureExtraction类

FeatureExtraction()
    {
        // 订阅当前激光帧运动畸变校正后的点云信息
        subLaserCloudInfo = nh.subscribe<lio_sam::cloud_info>("lio_sam/deskew/cloud_info", 1, &FeatureExtraction::laserCloudInfoHandler, this, ros::TransportHints().tcpNoDelay());
        // 发布当前激光帧提取特征之后的点云信息
        pubLaserCloudInfo = nh.advertise<lio_sam::cloud_info> ("lio_sam/feature/cloud_info", 1);
        // 发布当前帧的角点点云
        pubCornerPoints = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/feature/cloud_corner", 1);
        // 发布当前帧的面点点云
        pubSurfacePoints = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/feature/cloud_surface", 1);
        // 初始化
        initializationValue();
    }

1.1. laserCloudInfoHandler

// 点云特征提取
    void laserCloudInfoHandler(const lio_sam::cloud_infoConstPtr& msgIn)
    {
        cloudInfo = *msgIn; // new cloud info
        cloudHeader = msgIn->header; // new cloud header
        // 把提取出的有效的点转成pcl格式
        pcl::fromROSMsg(msgIn->cloud_deskewed, *extractedCloud); // new cloud for extraction
        // 计算当前激光帧点云中每个点的曲率
        calculateSmoothness();
        // 标记属于遮挡、平行两种情况的点,不做特征提取,同LOAM论文图4的情况
        markOccludedPoints();
        // 提取特征,同aloam,没有区分明显和不明显的角点/面点
        extractFeatures();
        // 发布角点、面点点云,发布带特征点云数据的当前激光帧点云信息
        publishFeatureCloud();
    }

1.1.1. calculateSmoothness()

// 计算曲率
    void calculateSmoothness()
    {
        // 遍历当前激光帧运动畸变校正后的有效点云
        int cloudSize = extractedCloud->points.size();
        for (int i = 5; i < cloudSize - 5; i++)
        {
            // 计算当前点和周围十个点的距离差,平坦位置处曲率较小,角点处曲率较大
            float diffRange = cloudInfo.pointRange[i-5] + cloudInfo.pointRange[i-4]
                            + cloudInfo.pointRange[i-3] + cloudInfo.pointRange[i-2]
                            + cloudInfo.pointRange[i-1] - cloudInfo.pointRange[i] * 10
                            + cloudInfo.pointRange[i+1] + cloudInfo.pointRange[i+2]
                            + cloudInfo.pointRange[i+3] + cloudInfo.pointRange[i+4]
                            + cloudInfo.pointRange[i+5];            
            // 距离差的平方做曲率
            cloudCurvature[i] = diffRange*diffRange;//diffX * diffX + diffY * diffY + diffZ * diffZ;
            // 下面两个值赋成初始值
            cloudNeighborPicked[i] = 0;
            cloudLabel[i] = 0;
            // cloudSmoothness for sorting
            // 存储该点曲率值、激光点一维索引
            cloudSmoothness[i].value = cloudCurvature[i];
            cloudSmoothness[i].ind = i;
        }
    }

1.1.2. markOccludedPoints()

// 选出(剔除)与激光方向平行或被遮挡的激光点,同LOAM论文图4的情况
    void markOccludedPoints()
    {
        int cloudSize = extractedCloud->points.size();
        // mark occluded points and parallel beam points
        for (int i = 5; i < cloudSize - 6; ++i)
        {
            // occluded points
            // 取出相邻两个点距离信息
            float depth1 = cloudInfo.pointRange[i]; // 存储了点到lidar中心的距离
            float depth2 = cloudInfo.pointRange[i+1];
            // 计算两个有效点之间的列id差
            int columnDiff = std::abs(int(cloudInfo.pointColInd[i+1] - cloudInfo.pointColInd[i]));
            // 1. 判断是否存在遮挡
            // 只有比较靠近才有意义
            if (columnDiff < 10){
                // 10 pixel diff in range image
                // 前者深度更大,说明后者把前者遮挡了,所以前者标记为1后续就不用了
                if (depth1 - depth2 > 0.3){  // 如果左边的点更远,那么左边的五个点都是无效点
                    cloudNeighborPicked[i - 5] = 1;
                    cloudNeighborPicked[i - 4] = 1;
                    cloudNeighborPicked[i - 3] = 1;
                    cloudNeighborPicked[i - 2] = 1;
                    cloudNeighborPicked[i - 1] = 1;
                    cloudNeighborPicked[i] = 1;
                // 后者深度更大,说明前者把后者遮挡了,所以后者标记为1后续就不用了
                }else if (depth2 - depth1 > 0.3){  // 此处同理,如果右边的边更远,那么右边的五个点设置为无效点
                    cloudNeighborPicked[i + 1] = 1;
                    cloudNeighborPicked[i + 2] = 1;
                    cloudNeighborPicked[i + 3] = 1;
                    cloudNeighborPicked[i + 4] = 1;
                    cloudNeighborPicked[i + 5] = 1;
                    cloudNeighborPicked[i + 6] = 1;
                }
            }

            // parallel beam
            // 2.判断当前点是否在与激光帧平行的平面上
            // 用前后相邻点判断当前点所在平面是否与激光束方向平行          
            float diff1 = std::abs(float(cloudInfo.pointRange[i-1] - cloudInfo.pointRange[i]));
            float diff2 = std::abs(float(cloudInfo.pointRange[i+1] - cloudInfo.pointRange[i]));
            // 如果两个点距离比较大,就很可能是平行的点,也很可能失去观测
            if (diff1 > 0.02 * cloudInfo.pointRange[i] && diff2 > 0.02 * cloudInfo.pointRange[i])
                cloudNeighborPicked[i] = 1;
        }
    }

1.1.3. extractFeatures()

// 提取特征
    void extractFeatures()
    {
        cornerCloud->clear();
        surfaceCloud->clear();

        pcl::PointCloud<PointType>::Ptr surfaceCloudScan(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr surfaceCloudScanDS(new pcl::PointCloud<PointType>());

        for (int i = 0; i < N_SCAN; i++)
        {
            surfaceCloudScan->clear();
            // 把每一份scan等分成6份,每份分别提取特征点
            for (int j = 0; j < 6; j++)
            {
                // 根据之前得到的每个scan的起始点和结束id来均分
                // 每段点云的起始、结束索引;startRingIndex为扫描线起始第5个激光点在一维数组中的索引
                int sp = (cloudInfo.startRingIndex[i] * (6 - j) + cloudInfo.endRingIndex[i] * j) / 6;
                int ep = (cloudInfo.startRingIndex[i] * (5 - j) + cloudInfo.endRingIndex[i] * (j + 1)) / 6 - 1;
                //  这种情况就不正常
                if (sp >= ep)
                    continue;
                // 按曲率排序
                std::sort(cloudSmoothness.begin()+sp, cloudSmoothness.begin()+ep, by_value());

                int largestPickedNum = 0;
                // 按照曲率从大到小遍历
                for (int k = ep; k >= sp; k--)
                {
                    // 找到这个点对应的原先的idx
                    int ind = cloudSmoothness[k].ind;
                    // 如果没有被认为是遮挡点,且曲率大于边缘点阈值,则认为是角点
                    if (cloudNeighborPicked[ind] == 0 && cloudCurvature[ind] > edgeThreshold)
                    {
                        largestPickedNum++;
                        // 每段最多找20个角点
                        // 如果单条扫描线扫描一周是1800个点,则划分6段,每段300个点,从中提取20个角点
                        if (largestPickedNum <= 20){
                            // 标记为角点
                            cloudLabel[ind] = 1;
                            // 加入角点点云
                            cornerCloud->push_back(extractedCloud->points[ind]);
                        } else {
                            break;
                        }
                        // 标记已被处理
                        cloudNeighborPicked[ind] = 1;
                        // 同一条扫描线上后5个点标记一下,不再处理,避免特征聚集
                        for (int l = 1; l <= 5; l++)
                        {
                            int columnDiff = std::abs(int(cloudInfo.pointColInd[ind + l] - cloudInfo.pointColInd[ind + l - 1]));
                            if (columnDiff > 10)
                                break;
                            cloudNeighborPicked[ind + l] = 1;
                        }
                        // 同一条扫描线上前5个点标记一下,不再处理,避免特征聚集
                        for (int l = -1; l >= -5; l--)
                        {
                            int columnDiff = std::abs(int(cloudInfo.pointColInd[ind + l] - cloudInfo.pointColInd[ind + l + 1]));
                            if (columnDiff > 10)
                                break;
                            cloudNeighborPicked[ind + l] = 1;
                        }
                    }
                }
                // 按照曲率从小到大遍历
                for (int k = sp; k <= ep; k++)
                {
                    // 激光点的索引
                    int ind = cloudSmoothness[k].ind;
                    // 当前激光点还未被处理,且曲率小于阈值,则认为是平面点
                    if (cloudNeighborPicked[ind] == 0 && cloudCurvature[ind] < surfThreshold)
                    {
                        // 标记为平面点
                        cloudLabel[ind] = -1;
                        // 标记已被处理
                        cloudNeighborPicked[ind] = 1;
                        // 同一条扫描线上后5个点标记一下,不再处理,避免特征聚集
                        for (int l = 1; l <= 5; l++) {
                            int columnDiff = std::abs(int(cloudInfo.pointColInd[ind + l] - cloudInfo.pointColInd[ind + l - 1]));
                            if (columnDiff > 10)
                                break;
                            cloudNeighborPicked[ind + l] = 1;
                        }
                        // 同一条扫描线上前5个点标记一下,不再处理,避免特征聚集
                        for (int l = -1; l >= -5; l--) {
                            int columnDiff = std::abs(int(cloudInfo.pointColInd[ind + l] - cloudInfo.pointColInd[ind + l + 1]));
                            if (columnDiff > 10)
                                break;
                            cloudNeighborPicked[ind + l] = 1;
                        }
                    }
                }
                // 平面点和未被处理的点,都认为是平面点,加入平面点云集合
                for (int k = sp; k <= ep; k++)
                {
                    // 注意这里小于等于0,也就是说不是角点的都认为是面点了
                    if (cloudLabel[k] <= 0){
                        surfaceCloudScan->push_back(extractedCloud->points[k]);
                    }
                }
            }

            surfaceCloudScanDS->clear();
            // 因为面点太多,所以做一个下采样
            downSizeFilter.setInputCloud(surfaceCloudScan);
            downSizeFilter.filter(*surfaceCloudScanDS);
            // 加入平面点云集合
            *surfaceCloud += *surfaceCloudScanDS;
        }
    }

1.1.4. publishFeatureCloud()

void publishFeatureCloud()
    {
        // free cloud info memory
        freeCloudInfoMemory();
        // save newly extracted features
        // 发布角点、面点点云,用于rviz展示
        cloudInfo.cloud_corner  = publishCloud(&pubCornerPoints,  cornerCloud,  cloudHeader.stamp, lidarFrame);
        cloudInfo.cloud_surface = publishCloud(&pubSurfacePoints, surfaceCloud, cloudHeader.stamp, lidarFrame);
        // publish to mapOptimization
        // 发布当前激光帧点云信息,加入了角点、面点点云数据,发布给mapOptimization
        pubLaserCloudInfo.publish(cloudInfo);
    }

你可能感兴趣的:(lio-sam,计算机视觉,人工智能)