SVM-基础

1. SVM要解决的问题

SVM的全称Support Vector Machine,即支持向量机,主要用于解决模式识别领域中的数据分类问题,属于有监督学习算法的一种。

SVM要解决的问题可以用一个经典的二分类问题加以描述。如图1所示,红色和蓝色的二维数据点显然是可以被一条直线分开的,在模式识别领域称为线性可分问题。然而将两类数据点分开的直线显然不止一条。图1(b)和(c)分别给出了A、B两种不同的分类方案,其中黑色实线为分界线,术语称为“决策面”。每个决策面对应了一个线性分类器。虽然在目前的数据上看,这两个分类器的分类结果是一样的,但如果考虑潜在的其他数据,则两者的分类性能是有差别的。

image.png

SVM算法认为图1中的分类器A在性能上优于分类器B,其依据是A的分类间隔比B要大。这里涉及到第一个SVM独有的概念“分类间隔”在保证决策面方向不变且不会出现错分样本的情况下移动决策面,会在原来的决策面两侧找到两个极限位置(越过该位置就会产生错分现象),如虚线所示。虚线的位置由决策面的方向和距离原决策面最近的几个样本的位置决定。而这两条平行虚线正中间的分界线就是在保持当前决策面方向不变的前提下的最优决策面。两条虚线之间的垂直距离就是这个最优决策面对应的分类间隔。显然每一个可能把数据集正确分开的方向都有一个最优决策面(有些方向无论如何移动决策面的位置也不可能将两类样本完全分开),而不同方向的最优决策面的分类间隔通常是不同的,那个具有“最大间隔”的决策面就是SVM要寻找的最优解。而这个真正的最优解对应的两侧虚线所穿过的样本点,就是SVM中的支持样本点,称为“支持向量”。对于图1中的数据,A决策面就是SVM寻找的最优解,而相应的三个位于虚线上的样本点在坐标系中对应的向量就叫做支持向量。

从表面上看,我们优化的对象似乎是这个决策面的方向和位置。但实际上最优决策面的方向和位置完全取决于选择哪些样本作为支持向量。而在经过漫长的公式推导后,你最终会发现,其实与线性决策面的方向和位置直接相关的参数都会被约减掉,最终结果只取决于样本点的选择结果。

到这里,我们明确了SVM算法要解决的是一个最优分类器的设计问题。既然叫作最优分类器,其本质必然是个最优化问题。所以,接下来我们要讨论的就是如何把SVM变成用数学语言描述的最优化问题模型,这就是我们在第二部分要讲的“线性SVM算法的数学建模”。

*关于“决策面”,为什么叫决策面,而不是决策线?好吧,在图1里,样本是二维空间中的点,也就是数据的维度是2,因此1维的直线可以分开它们。但是在更加一般的情况下,样本点的维度是n,则将它们分开的决策面的维度就是n-1维的超平面(可以想象一下3维空间中的点集被平面分开),所以叫“决策面”更加具有普适性,或者你可以认为直线是决策面的一个特例。

2.线性SVM算法的数学建模

一个最优化问题通常有两个最基本的因素:
1)目标函数,也就是你希望什么东西的什么指标达到最好;
2)优化对象,你期望通过改变哪些因素来使你的目标函数达到最优。
在线性SVM算法中,目标函数显然就是那个“分类间隔”,而优化对象则是决策面。所以要对SVM问题进行数学建模,首先要对上述两个对象(“分类间隔”和“决策面”)进行数学描述。按照一般的思维习惯,我们先描述决策面。

2.1 决策面方程

你可能感兴趣的:(SVM-基础)