这个类是transformer encoder的组成部分,代表encoder的一个层,而encoder就是将transformerEncoderLayer重复几层。
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
activation: the activation function of intermediate layer, relu or gelu (default=relu).
Examples::
encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
src = torch.rand(10, 32, 512)
out = encoder_layer(src)
需要注意的是transformer 只能输入 seqlenth x batch x dim 形式的数据。
这里是transformer的encoder部分,即将上述的encoder-layer作为参数输入初始话以后可以获得TransformerEncoder
Args
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
num_layers: the number of sub-encoder-layers in the encoder (required).
norm: the layer normalization component (optional).
Examples::
encoder_layer = nn.TransformerEncoderLayer(d_model=512,nhead=8) transformer_encoder=nn.TransformerEncoder(encoder_layer,num_layers=6)
src = torch.rand(10, 32, 512)
out =transformer_encoder(src)
这里的数学原理就不再详细叙述了,因为我也没搞特别明白反正就是获得位置信息,与embedding加起来就行了。
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
这里将参考pytorch tutorial中的内容
class First_TransformerModel(nn.Module):
def __init__(self, ninp=300, nhead=4, nhid=128, nlayers=6, dropout=0.5):
super(First_TransformerModel, self).__init__()
from torch.nn import TransformerEncoder, TransformerEncoderLayer
self.model_type = 'Transformer'
self.src_mask = None
self.pos_encoder = PositionalEncoding(ninp, dropout)
encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout)
self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
self.ninp = ninp
def _generate_square_subsequent_mask(self, src, lenths):
'''
padding_mask
src:max_lenth,num,300
lenths:[lenth1,lenth2...]
'''
# mask num_of_sens x max_lenth
mask = torch.ones(src.size(1), src.size(0)) == 1
for i in range(len(lenths)):
lenth = lenths[i]
for j in range(lenth):
mask[i][j] = False
return mask
def forward(self, src, mask):
'''
src:num_of_all_sens,max_lenth,300
'''
self.src_mask = mask
src = src * math.sqrt(self.ninp)
src = self.pos_encoder(src)
output = self.transformer_encoder(src, src_key_padding_mask=self.src_mask)
output = output[0,:,:]
return output
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
在这里我们只需将输入的src (seqlenth x batch x ninp)进行下面的操作即可,先乘上根号下的ninp,经过positionencoder,再经过encoder即可。
src = src * math.sqrt(self.ninp)
src = self.pos_encoder(src)
output = self.transformer_encoder(src, src_key_padding_mask=self.src_mask)
这里还需要提一下mask
mask 是什么呢?
mask主要可以分为两种mask,一种是src_mask,一种是src_key_padding_mask, 这里我们主要解释src_key_padding_mask。nn.Transformer中,提到了src_key_padding_mask的size,必须是 NxS ,即 batch x seqlenths通过这个mask,就可以将padding的部分忽略掉,让attention注意力机制不再参与这一部分的运算。
需要注意的是,src_key_padding_mask 是一个二值化的tensor,在需要被忽略地方应该是True,在需要保留原值的情况下,是False
这里附上我定义的双层transformer代码
第一层
class First_TransformerModel(nn.Module):
def __init__(self, ninp=300, nhead=4, nhid=128, nlayers=6, dropout=0.5):
super(First_TransformerModel, self).__init__()
from torch.nn import TransformerEncoder, TransformerEncoderLayer
self.model_type = 'Transformer'
self.src_mask = None
self.pos_encoder = PositionalEncoding(ninp, dropout)
encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout)
self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
# self.encoder = nn.Embedding(ntoken, ninp)
self.ninp = ninp
# self.decoder = nn.Linear(ninp, ntoken)
def _generate_square_subsequent_mask(self, src, lenths):
'''
padding_mask
src:max_lenth,num,300
lenths:[lenth1,lenth2...]
'''
# mask num_of_sens x max_lenth
mask = torch.ones(src.size(1), src.size(0)) == 1
for i in range(len(lenths)):
lenth = lenths[i]
for j in range(lenth):
mask[i][j] = False
# mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
#mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def forward(self, src, mask):
'''
src:num_of_all_sens,max_lenth,300
'''
self.src_mask = mask
src = src * math.sqrt(self.ninp)
src = self.pos_encoder(src)
output = self.transformer_encoder(src, src_key_padding_mask=self.src_mask)
output = output[0,:,:]
#output = self.decoder(output)
return output
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
第二层
#second level
class Second_TransformerModel(nn.Module):
def __init__(self, ninp=300, nhead=4, nhid=128, nlayers=6, dropout=0.5):
super(Second_TransformerModel, self).__init__()
from torch.nn import TransformerEncoder, TransformerEncoderLayer
self.src_mask = None
self.pos_encoder = PositionalEncoding(ninp, dropout)
encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout)
self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
self.ninp = ninp
def _generate_square_subsequent_mask(self, src, lenths):
'''
padding_mask
src:num_of_sentence x batch(文章数) x 300
lenths:[lenth1,lenth2...]
'''
# mask num_of_sens x max_lenth
mask = torch.ones(src.size(1), src.size(0)) == 1
for i in range(len(lenths)):
lenth = lenths[i]
for j in range(lenth):
mask[i][j] = False
return mask
def forward(self, src, mask):
'''
src:max_sentence_num x batch(文章数) x 300
'''
self.src_mask = mask
src = src * math.sqrt(self.ninp)
src = self.pos_encoder(src)
output = self.transformer_encoder(src, src_key_padding_mask=self.src_mask)
#output = self.decoder(output)
return output
最终代码
class segmentmodel(nn.Module):
def __init__(self, ninp=300, nhead=4, nhid=128, nlayers=6, dropout=0.5):
super(segmentmodel, self).__init__()
self.first_layer = First_TransformerModel(ninp,nhead,nhid,nlayers,dropout)
self.second_layer = Second_TransformerModel(ninp,nhead,nhid,nlayers,dropout)
self.linear = nn.Linear(ninp,2)
def pad(self, s, max_length):
s_length = s.size()[0]
v = torch.tensor(s.unsqueeze(0).unsqueeze(0))
padded = F.pad(v, (0, 0, 0, max_length - s_length)) # (1, 1, max_length, 300)
shape = padded.size()
return padded.view(shape[2], 1, shape[3]) # (max_length, 1, 300)
def pad_document(self, d, max_document_length):
d_length = d.size()[0]
v = d.unsqueeze(0).unsqueeze(0)
padded = F.pad(v, (0, 0,0, max_document_length - d_length )) # (1, 1, max_length, 300)
shape = padded.size()
return padded.view(shape[2], 1, shape[3]) # (max_length, 1, 300)
def forward(self, batch):
batch_size = len(batch)
sentences_per_doc = []
all_batch_sentences = []
for document in batch:
all_batch_sentences.extend(document)
sentences_per_doc.append(len(document))
lengths = [s.size()[0] for s in all_batch_sentences]
max_length = max(lengths)
#logger.debug('Num sentences: %s, max sentence length: %s',
# sum(sentences_per_doc), max_length)
padded_sentences = [self.pad(s, max_length) for s in all_batch_sentences]
big_tensor = torch.cat(padded_sentences, 1) # (max_length, batch size, 300)
mask = self.first_layer._generate_square_subsequent_mask(big_tensor,
lengths).cuda()
firstlayer_out = self.first_layer(src = big_tensor,mask = mask)
# 句子数 x 300
#padded_output batch x 300
# 将各个文章中的句子分别取出来
encoded_documents =[]
index = 0
for sentences_count in sentences_per_doc:
end_index = index + sentences_count
encoded_documents.append(firstlayer_out[index : end_index, :])
index = end_index
#docuemnt_padding
doc_sizes = [doc.size()[0] for doc in encoded_documents]
max_doc_size = np.max(doc_sizes)
padded_docs = [self.pad_document(d, max_doc_size) for d in encoded_documents]
docs_tensor = torch.cat(padded_docs, 1)
#docs_tensor max_doc_size x batch x 300
mask = self.second_layer._generate_square_subsequent_mask(docs_tensor,doc_sizes).cuda()
second_layer_out = self.second_layer(src = docs_tensor,mask = mask)
#去除最后一个句子
doc_outputs = []
for i, doc_len in enumerate(doc_sizes):
doc_outputs.append(second_layer_out[0:doc_len - 1, i, :]) # -1 to remove last predic
sentence_outputs = torch.cat(doc_outputs, 0)
# 句子数 x 300
out = self.linear(sentence_outputs)
return out
值得注意的是,这里的第一层提取的句子信息,是采用的第一层的输出的一个向量来表示的,即从 seqlenth x N x 300 中选出 seqlenth维度的第一个作为句子表示,得到Nx300的tensor。
————————————————
来源:https://blog.csdn.net/qq_43645301/article/details/109279616