- 深度学习学习经验——卷积神经网络(CNN)
Linductor
深度学习学习经验深度学习学习cnn
卷积神经网络卷积神经网络(CNN)1.卷积神经网络的基本组成2.卷积操作3.激活函数(ReLU)4.池化操作5.全连接层6.卷积神经网络的完整实现项目示例项目目标1.加载数据2.卷积层:图像的特征探测器2.1第一个卷积层3.激活函数:增加非线性4.池化层:信息压缩器5.多层卷积和池化:逐层提取更高层次的特征6.全连接层:分类器7.模型训练和测试完整的项目示例代码总结卷积神经网络(CNN)卷积神经网
- 深度学习中常见激活函数总结
向左转, 向右走ˉ
深度学习人工智能pytorchpython
以下是一份深度学习激活函数的系统总结,涵盖定义、类型、作用、应用及选择影响,便于你快速掌握核心知识:一、激活函数的定义在神经网络中,激活函数(ActivationFunction)是神经元计算输出的非线性变换函数,作用于加权输入和偏置之和:输出=f(加权和+偏置)核心价值:引入非线性,使神经网络能够拟合任意复杂函数(无激活函数的深度网络等价于单层线性模型)。二、常见激活函数类型1.线性函数(Lin
- educoder机器学习 --- 神经网络
木右加木
educoder机器学习神经网络
第1关:神经网络基本概念1、C第2关:激活函数#encoding=utf8defrelu(x):'''x:负无穷到正无穷的实数'''#*********Begin*********#ifx<=0:return0else:returnx#*********End*********#第3关:反向传播算法#encoding=utf8importosimportpandasaspdfromsklearn.
- 激活函数和批归一化(BatchNorm)
简单记录学习~。在神经网络中,激活函数和批归一化(BatchNorm)的配合使用是为了解决数据分布偏移和梯度不稳定问题。以下是逐步解释:1.激活函数为何导致值向上下限移动?以Sigmoid/Tanh为例:这类饱和型激活函数(如Sigmoid、Tanh)的导数在输入绝对值较大时会趋近于0(饱和区)。例如:Sigmoid的输出范围是(0,1)当输入≫0时,输出接近1;x≪0时,输出接近0。
- 人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
weisian151
人工智能人工智能cnn神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理网格状数据(如图像、视频、音频)设计的深度学习模型。它通过模拟生物视觉机制,从原始数据中自动提取多层次的特征,最终实现高效的分类、检测或生成任务。1、核心概念与原理1、生物视觉启发局部感受野:模仿人类视觉皮层神经元仅响应局部区域刺激的特性,每个神经元关注输入数据的局部区域(如图像的一小块区域)。权值共享:同一
- CNN-LSTM神经网络多输入单输出回归预测【MATLAB】
沅_Yuan
炼丹师神经网络cnnlstm
1CNN(卷积神经网络)部分作用:特征提取:CNN主要用于从输入数据中提取空间特征。它能够处理图像、视频帧或其他形式的空间数据。组成部分:卷积层:使用卷积核对输入数据进行卷积操作,生成特征图。激活函数:通常使用ReLU(线性整流单元)激活函数,增加非线性。池化层:通过最大池化(MaxPooling)或平均池化(AveragePooling),减少特征图的尺寸,保留最重要的特征,减少计算复杂度。流程
- DAY 41 简单CNN
冬天给予的预感
cnn人工智能神经网络
知识回顾数据增强卷积神经网络定义的写法batch归一化:调整一个批次的分布,常用与图像数据特征图:只有卷积操作输出的才叫特征图调度器:直接修改基础学习率卷积操作常见流程如下:1.输入→卷积层→Batch归一化层(可选)→池化层→激活函数→下一层Flatten->Dense(withDropout,可选)->Dense(Output)importtorchimporttorch.nnasnnimpo
- Python打卡训练营-Day41-简单CNN
traMpo1ine
cnnpython深度学习
@浙大疏锦行知识回顾数据增强卷积神经网络定义的写法batch归一化:调整一个批次的分布,常用与图像数据特征图:只有卷积操作输出的才叫特征图调度器:直接修改基础学习率卷积操作常见流程如下:1.输入→卷积层→Batch归一化层(可选)→池化层→激活函数→下一层Flatten->Dense(withDropout,可选)->Dense(Output)这里相关的概念比较多,如果之前没有学习过复试班强化班中
- DAY 41 简单CNN
yizhimie37
python训练营打卡笔记深度学习
@浙大疏锦行https://blog.csdn.net/weixin_45655710知识回顾数据增强卷积神经网络定义的写法batch归一化:调整一个批次的分布,常用与图像数据特征图:只有卷积操作输出的才叫特征图调度器:直接修改基础学习率卷积操作常见流程如下:1.输入→卷积层→Batch归一化层(可选)→池化层→激活函数→下一层Flatten->Dense(withDropout,可选)->Den
- 【机器学习实战】Datawhale夏令营2:深度学习回顾
城主_全栈开发
机器学习机器学习深度学习人工智能
#DataWhale夏令营#ai夏令营文章目录1.深度学习的定义1.1深度学习&图神经网络1.2机器学习和深度学习的关系2.深度学习的训练流程2.1数学基础2.1.1梯度下降法基本原理数学表达步骤学习率α梯度下降的变体2.1.2神经网络与矩阵网络结构表示前向传播激活函数反向传播批处理卷积操作参数更新优化算法正则化初始化2.2激活函数Sigmoid函数:Tanh函数:ReLU函数(Rectified
- 深入理解AI人工智能深度学习的原理架构
AI学长带你学AI
人工智能深度学习ai
深入理解AI人工智能深度学习的原理架构关键词:人工智能、深度学习、原理架构、神经网络、数学模型摘要:本文旨在深入剖析AI人工智能深度学习的原理架构。首先介绍了深度学习的背景,包括其目的、预期读者、文档结构和相关术语。接着阐述了深度学习的核心概念,如神经网络、激活函数等,并通过示意图和流程图进行直观展示。详细讲解了核心算法原理,如反向传播算法,并给出Python代码示例。同时,介绍了深度学习中的数学
- Day41 Python打卡训练营
知识回顾1.数据增强2.卷积神经网络定义的写法3.batch归一化:调整一个批次的分布,常用与图像数据4.特征图:只有卷积操作输出的才叫特征图5.调度器:直接修改基础学习率卷积操作常见流程如下:1.输入→卷积层→Batch归一化层(可选)→池化层→激活函数→下一层2.Flatten->Dense(withDropout,可选)->Dense(Output)importtorchimporttorc
- 60天python训练营打卡day41
tan90�=
python60天打卡python开发语言
学习目标:60天python训练营打卡学习内容:DAY41简单CNN知识回顾1.数据增强2.卷积神经网络定义的写法3.batch归一化:调整一个批次的分布,常用与图像数据4.特征图:只有卷积操作输出的才叫特征图5.调度器:直接修改基础学习率卷积操作常见流程如下:输入→卷积层→Batch归一化层(可选)→池化层→激活函数→下一层2.Flatten->Dense(withDropout,可选)->De
- 【动手学深度学习】4.2~4.3 多层感知机的实现
XiaoJ1234567
《动手学深度学习》深度学习人工智能MLP多层感知机
目录4.2.多层感知机的从零开始实现1)初始化模型参数2)激活函数3)模型4)损失函数5)训练4.3.多层感知机的简洁实现1)模型2)小结.4.2.多层感知机的从零开始实现现在让我们实现一个多层感知机。为了与之前softmax回归获得的结果进行比较,我们将继续使用Fashion-MNIST图像分类数据集。importtorchfromtorchimportnnfromd2limporttorcha
- 深度学习——激活函数
笨小古
深度强化学习深度学习人工智能
深度学习——激活函数激活函数是人工是人工神经网络中一个关键的组成部分,它被设计用来引入非线性特性到神经网络模型中,使神经网络能够学习和逼近复杂的非线性映射关系。1.引入非线性能力没有激活函数的神经网络本质上只是线性变换的叠加,无论多少层也只能表示线性函数,能力有限。激活函数使网络可以逼近任意复杂函数(依据万能逼近定理)2.控制信息流动某些激活函数可以抑制部分神经元的输出(如ReLU),是模型更稀疏
- MSE做多分类任务如何
用「考试打分」来类比,秒懂为啥多分类任务很少用MSE,以及硬用会出啥问题~一、多分类任务的「常规操作」:交叉熵vsMSE1.多分类任务长啥样?例子:手写数字识别(0-9共10类)、动物图片分类(猫/狗/鸟等)。目标:模型输出每个类别的概率,选概率最高的作为预测结果。2.交叉熵为啥是「标配」?输出:配合softmax激活函数,输出每个类别的概率(和为1)。判卷逻辑:看「预测概率是否接近真实类别」,比
- 多分类与多标签分类的损失函数
麦格芬230
自然语言处理
使用神经网络处理多分类任务时,一般采用softmax作为输出层的激活函数,使用categorical_crossentropy(多类别交叉熵损失函数)作为损失函数,输出层包含k个神经元对应k个类别。在多标签分类任务中,一般采用sigmoid作为输出层的激活函数,使用binary_crossentropy(二分类交叉熵损失函数)作为损失函数,就是将最后分类层的每个输出节点使用sigmoid激活函数激
- 多标签分类的激活函数和损失函数
通过幸福的路唯有奋斗
深度学习
刚入门DeepLearning不久,前一段时间一直在学习cifar10的分类,突然最近要做一个多标签的任务,突然有点不知所措,不知从何下手了。于是查阅了一些资料,了解一下多分类任务与多标签分类任务的异同。-多分类任务:只有一个标签,但是标签有多种类别。-多标签分类任务:一条数据可能有一个或者多个标签,比如一个病人的眼底检测报告,它可能被标记患有糖尿病、高血压多个标签。多标签分类任务的特点:1.类别
- 多标签多分类 用什么函数激活
MYH516
分类深度学习机器学习
在多标签多分类任务中,激活函数的选择需要根据任务特性和输出层的设计来决定。以下是常见的激活函数及其适用场景:一、多标签分类任务的特点每个样本可以属于多个类别(标签之间非互斥,例如一篇文章可能同时属于“科技”和“财经”)。输出层通常为:神经元数量等于标签总数(每个神经元对应一个二分类任务)。输出值需表示“属于该标签的概率”或“是否存在该标签”。二、常用激活函数及适用场景1.Sigmoid激活函数(最
- 神经网络训练:激活函数与损失函数的选择,一篇干到底!
赵青临的辉
深入人工智能:从基础到实战神经网络深度学习人工智能
在神经网络的世界里,激活函数决定模型能不能“学会非线性”,损失函数决定模型往哪个方向学、学多少。简单来说:激活函数=大脑皮层(能不能思考)损失函数=导师鞭子(该往哪里打)搞不懂这俩,你的模型不是在原地转圈,就是跑偏方向还乐呵呵地说“我收敛啦”。今天这篇文章,直接讲清楚这两个东西:各种激活函数到底干嘛用,什么时候用谁?损失函数选错了会多坑?实战中怎么选,给你一个稳的默认组合一、激活函数:神经网络能“
- 基于卷积神经网络的 Fashionminsit 数据集分类
ʚɞ 长腿欧巴
cnn分类人工智能
实验目的1.理解卷积神经网络(CNN)。2.掌握数据预处理和增强技术:学习如何通过数据增强技术(如旋转、缩放、剪切等)来增加模型的泛化能力,减少过拟合。3.应用正则化技术:通过实验,掌握Dropout、L2正则化等技术在卷积神经网络中的应用,以降低模型的过拟合风险。4.优化模型性能:通过调整网络结构和超参数(如卷积层数量、卷积核大小、池化层、激活函数等),优化模型的准确率。5.理解过拟合现象:通过
- 激活函数介绍
东皇太星
人工智能
激活函数(ActivationFunction)是神经网络中非常重要的组成部分,它决定了神经元的输出,并引入了非线性,使得神经网络能够学习复杂的模式。以下是一些常见的激活函数及其特点:1.线性激活函数(LinearActivationFunction)公式:f(x)=xf(x)=x特点:输出与输入成正比,没有非线性变换。适用于回归问题,但在深层网络中会导致网络退化为单层网络(因为多层线性变换仍然是
- python训练营打卡第41天
简单CNN知识回顾数据增强卷积神经网络定义的写法batch归一化:调整一个批次的分布,常用与图像数据特征图:只有卷积操作输出的才叫特征图调度器:直接修改基础学习率卷积操作常见流程如下:1.输入→卷积层→Batch归一化层(可选)→池化层→激活函数→下一层2.Flatten->Dense(withDropout,可选)->Dense(Output)importtorchimporttorch.nna
- 神经网络学习-神经网络简介【Transformer、pytorch、Attention介绍与区别】
Crabfishhhhh
神经网络学习transformerpythonpytorch
神经网络学习笔记本笔记总结了神经网络基础理论、常见模型结构、优化方法以及PyTorch实践,适用于初学者和进阶者查阅学习。一、神经网络基础1.神经元模型神经元通过输入加权求和后激活:y=f(∑i=1nwixi+b)y=f\left(\sum_{i=1}^{n}w_ix_i+b\right)y=f(i=1∑nwixi+b)xix_ixi:输入wiw_iwi:权重bbb:偏置fff:激活函数,如ReL
- 神经元激活函数在神经网络里起着关键作用
MYH516
神经网络人工智能深度学习
神经元激活函数在神经网络里起着关键作用,它能为网络赋予非线性能力,让网络可以学习复杂的函数映射关系。下面从多个方面详细剖析激活函数的作用和意义:1.核心作用:引入非线性因素线性模型的局限性:假设一个简单的神经元没有激活函数,其输出为\(y=w_1x_1+w_2x_2+b\),这本质上是一个线性函数。即便构建多层这样的线性神经元网络,最终的输出依然是输入的线性组合,就像\(y=w_1'x_1+w_2
- 【OpenCV】cv::exp函数详解
浩瀚之水_csdn
#OpenCV学习opencv人工智能计算机视觉
cv::exp是OpenCV中用于对矩阵中的每个元素进行自然指数运算(即ex)的函数,常用于图像增强、概率计算或机器学习中的激活函数(如Softmax)。以下是详细解析:函数原型voidcv::exp(InputArraysrc,OutputArraydst);参数说明:src:输入矩阵(CV_32F或CV_64F类型)。dst:输出矩阵,大小和通道数与src相同,数据类型自动匹配为CV_32F或
- 第四十一天打卡
wswlqsss
深度学习人工智能计算机视觉
简单CNN知识回顾数据增强卷积神经网络定义的写法batch归一化:调整一个批次的分布,常用与图像数据特征图:只有卷积操作输出的才叫特征图调度器:直接修改基础学习率卷积操作常见流程如下:1.输入→卷积层→Batch归一化层(可选)→池化层→激活函数→下一层Flatten->Dense(withDropout,可选)->Dense(Output)简单CNN1.数据增强数据增强就像是在餐厅的食材上应用各
- 狂登Nature子刊!2025年KAN还是大势!
沃恩智慧
人工智能深度学习机器学习机器学习人工智能深度学习
在人工智能领域,Kolmogorov-ArnoldNetworks(KAN)正成为一种极具潜力的创新技术。KAN的核心在于将激活函数置于网络的边(连接)上,而不是传统的节点上,并通过B样条函数进行参数化,使得网络能够以较少的参数量实现高精度的预测。这种设计不仅提高了模型的透明度和可解释性,还为科学研究提供了新的视角。KAN在多个领域展现出卓越性能,包括时间序列预测、图学习任务以及卷积神经网络的改进
- 第十二课:大白话教你什么是感知机
顽强卖力
大数据数据挖掘python算法数据分析
感知机:神经网络的"幼稚园小朋友"一:感知机是啥?——会画线的智能铅笔1.1最简单的神经网络想象你教小朋友分类红蓝积木:感知机就像小朋友第一次尝试画线分开它们画歪了就擦掉重画,直到完全分开本质:一个会自动调整的线性分类器1.2感知机的三件套输入层:接收特征(如积木的颜色值、形状值)权重:每个特征的重要性(红色比形状更重要?)激活函数:决定是否"开火"(要不要喊"这是蓝积木!")类比:感知机就像个吃
- BasicBlock组件的详解
浩瀚之水_csdn
#目标分类(理论)神经网络
BasicBlock是ResNet(残差网络)中的核心组件,主要用于解决深度神经网络中的梯度消失问题,同时提升特征表达能力。以下是其关键特性与实现原理的详细解析:一、基本结构与设计原理双层卷积架构BasicBlock由两个连续的3×3卷积层构成,每层后接BatchNormalization(BN)和ReLU激活函数:第一层:3×3卷积,可调整步长(stride)实现下采样。第二层:3×3卷积,固定
- 书其实只有三类
西蜀石兰
类
一个人一辈子其实只读三种书,知识类、技能类、修心类。
知识类的书可以让我们活得更明白。类似十万个为什么这种书籍,我一直不太乐意去读,因为单纯的知识是没法做事的,就像知道地球转速是多少一样(我肯定不知道),这种所谓的知识,除非用到,普通人掌握了完全是一种负担,维基百科能找到的东西,为什么去记忆?
知识类的书,每个方面都涉及些,让自己显得不那么没文化,仅此而已。社会认为的学识渊博,肯定不是站在
- 《TCP/IP 详解,卷1:协议》学习笔记、吐槽及其他
bylijinnan
tcp
《TCP/IP 详解,卷1:协议》是经典,但不适合初学者。它更像是一本字典,适合学过网络的人温习和查阅一些记不清的概念。
这本书,我看的版本是机械工业出版社、范建华等译的。这本书在我看来,翻译得一般,甚至有明显的错误。如果英文熟练,看原版更好:
http://pcvr.nl/tcpip/
下面是我的一些笔记,包括我看书时有疑问的地方,也有对该书的吐槽,有不对的地方请指正:
1.
- Linux—— 静态IP跟动态IP设置
eksliang
linuxIP
一.在终端输入
vi /etc/sysconfig/network-scripts/ifcfg-eth0
静态ip模板如下:
DEVICE="eth0" #网卡名称
BOOTPROTO="static" #静态IP(必须)
HWADDR="00:0C:29:B5:65:CA" #网卡mac地址
IPV6INIT=&q
- Informatica update strategy transformation
18289753290
更新策略组件: 标记你的数据进入target里面做什么操作,一般会和lookup配合使用,有时候用0,1,1代表 forward rejected rows被选中,rejected row是输出在错误文件里,不想看到reject输出,将错误输出到文件,因为有时候数据库原因导致某些column不能update,reject就会output到错误文件里面供查看,在workflow的
- 使用Scrapy时出现虽然队列里有很多Request但是却不下载,造成假死状态
酷的飞上天空
request
现象就是:
程序运行一段时间,可能是几十分钟或者几个小时,然后后台日志里面就不出现下载页面的信息,一直显示上一分钟抓取了0个网页的信息。
刚开始已经猜到是某些下载线程没有正常执行回调方法引起程序一直以为线程还未下载完成,但是水平有限研究源码未果。
经过不停的google终于发现一个有价值的信息,是给twisted提出的一个bugfix
连接地址如下http://twistedmatrix.
- 利用预测分析技术来进行辅助医疗
蓝儿唯美
医疗
2014年,克利夫兰诊所(Cleveland Clinic)想要更有效地控制其手术中心做膝关节置换手术的费用。整个系统每年大约进行2600例此类手术,所以,即使降低很少一部分成本,都可以为诊 所和病人节约大量的资金。为了找到适合的解决方案,供应商将视野投向了预测分析技术和工具,但其分析团队还必须花时间向医生解释基于数据的治疗方案意味着 什么。
克利夫兰诊所负责企业信息管理和分析的医疗
- java 线程(一):基础篇
DavidIsOK
java多线程线程
&nbs
- Tomcat服务器框架之Servlet开发分析
aijuans
servlet
最近使用Tomcat做web服务器,使用Servlet技术做开发时,对Tomcat的框架的简易分析:
疑问: 为什么我们在继承HttpServlet类之后,覆盖doGet(HttpServletRequest req, HttpServetResponse rep)方法后,该方法会自动被Tomcat服务器调用,doGet方法的参数有谁传递过来?怎样传递?
分析之我见: doGet方法的
- 揭秘玖富的粉丝营销之谜 与小米粉丝社区类似
aoyouzi
揭秘玖富的粉丝营销之谜
玖富旗下悟空理财凭借着一个微信公众号上线当天成交量即破百万,第七天成交量单日破了1000万;第23天时,累计成交量超1个亿……至今成立不到10个月,粉丝已经超过500万,月交易额突破10亿,而玖富平台目前的总用户数也已经超过了1800万,位居P2P平台第一位。很多互联网金融创业者慕名前来学习效仿,但是却鲜有成功者,玖富的粉丝营销对外至今仍然是个谜。
近日,一直坚持微信粉丝营销
- Java web的会话跟踪技术
百合不是茶
url会话Cookie会话Seession会话Java Web隐藏域会话
会话跟踪主要是用在用户页面点击不同的页面时,需要用到的技术点
会话:多次请求与响应的过程
1,url地址传递参数,实现页面跟踪技术
格式:传一个参数的
url?名=值
传两个参数的
url?名=值 &名=值
关键代码
- web.xml之Servlet配置
bijian1013
javaweb.xmlServlet配置
定义:
<servlet>
<servlet-name>myservlet</servlet-name>
<servlet-class>com.myapp.controller.MyFirstServlet</servlet-class>
<init-param>
<param-name>
- 利用svnsync实现SVN同步备份
sunjing
SVN同步E000022svnsync镜像
1. 在备份SVN服务器上建立版本库
svnadmin create test
2. 创建pre-revprop-change文件
cd test/hooks/
cp pre-revprop-change.tmpl pre-revprop-change
3. 修改pre-revprop-
- 【分布式数据一致性三】MongoDB读写一致性
bit1129
mongodb
本系列文章结合MongoDB,探讨分布式数据库的数据一致性,这个系列文章包括:
数据一致性概述与CAP
最终一致性(Eventually Consistency)
网络分裂(Network Partition)问题
多数据中心(Multi Data Center)
多个写者(Multi Writer)最终一致性
一致性图表(Consistency Chart)
数据
- Anychart图表组件-Flash图转IMG普通图的方法
白糖_
Flash
问题背景:项目使用的是Anychart图表组件,渲染出来的图是Flash的,往往一个页面有时候会有多个flash图,而需求是让我们做一个打印预览和打印功能,让多个Flash图在一个页面上打印出来。
那么我们打印预览的思路是获取页面的body元素,然后在打印预览界面通过$("body").append(html)的形式显示预览效果,结果让人大跌眼镜:Flash是
- Window 80端口被占用 WHY?
bozch
端口占用window
平时在启动一些可能使用80端口软件的时候,会提示80端口已经被其他软件占用,那一般又会有那些软件占用这些端口呢?
下面坐下总结:
1、web服务器是最经常见的占用80端口的,例如:tomcat , apache , IIS , Php等等;
2
- 编程之美-数组的最大值和最小值-分治法(两种形式)
bylijinnan
编程之美
import java.util.Arrays;
public class MinMaxInArray {
/**
* 编程之美 数组的最大值和最小值 分治法
* 两种形式
*/
public static void main(String[] args) {
int[] t={11,23,34,4,6,7,8,1,2,23};
int[]
- Perl正则表达式
chenbowen00
正则表达式perl
首先我们应该知道 Perl 程序中,正则表达式有三种存在形式,他们分别是:
匹配:m/<regexp>;/ (还可以简写为 /<regexp>;/ ,略去 m)
替换:s/<pattern>;/<replacement>;/
转化:tr/<pattern>;/<replacemnt>;
- [宇宙与天文]行星议会是否具有本行星大气层以外的权力呢?
comsci
举个例子: 地球,地球上由200多个国家选举出一个代表地球联合体的议会,那么现在地球联合体遇到一个问题,地球这颗星球上面的矿产资源快要采掘完了....那么地球议会全体投票,一致通过一项带有法律性质的议案,既批准地球上的国家用各种技术手段在地球以外开采矿产资源和其它资源........
&
- Oracle Profile 使用详解
daizj
oracleprofile资源限制
Oracle Profile 使用详解 转
一、目的:
Oracle系统中的profile可以用来对用户所能使用的数据库资源进行限制,使用Create Profile命令创建一个Profile,用它来实现对数据库资源的限制使用,如果把该profile分配给用户,则该用户所能使用的数据库资源都在该profile的限制之内。
二、条件:
创建profile必须要有CREATE PROFIL
- How HipChat Stores And Indexes Billions Of Messages Using ElasticSearch & Redis
dengkane
elasticsearchLucene
This article is from an interview with Zuhaib Siddique, a production engineer at HipChat, makers of group chat and IM for teams.
HipChat started in an unusual space, one you might not
- 循环小示例,菲波拉契序列,循环解一元二次方程以及switch示例程序
dcj3sjt126com
c算法
# include <stdio.h>
int main(void)
{
int n;
int i;
int f1, f2, f3;
f1 = 1;
f2 = 1;
printf("请输入您需要求的想的序列:");
scanf("%d", &n);
for (i=3; i<n; i
- macbook的lamp环境
dcj3sjt126com
lamp
sudo vim /etc/apache2/httpd.conf
/Library/WebServer/Documents
是默认的网站根目录
重启Mac上的Apache服务
这个命令很早以前就查过了,但是每次使用的时候还是要在网上查:
停止服务:sudo /usr/sbin/apachectl stop
开启服务:s
- java ArrayList源码 下
shuizhaosi888
ArrayList源码
版本 jdk-7u71-windows-x64
JavaSE7 ArrayList源码上:http://flyouwith.iteye.com/blog/2166890
/**
* 从这个列表中移除所有c中包含元素
*/
public boolean removeAll(Collection<?> c) {
- Spring Security(08)——intercept-url配置
234390216
Spring Securityintercept-url访问权限访问协议请求方法
intercept-url配置
目录
1.1 指定拦截的url
1.2 指定访问权限
1.3 指定访问协议
1.4 指定请求方法
1.1 &n
- Linux环境下的oracle安装
jayung
oracle
linux系统下的oracle安装
本文档是Linux(redhat6.x、centos6.x、redhat7.x) 64位操作系统安装Oracle 11g(Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production),本文基于各种网络资料精心整理而成,共享给有需要的朋友。如有问题可联系:QQ:52-7
- hotspot虚拟机
leichenlei
javaHotSpotjvm虚拟机文档
JVM参数
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html
JVM工具
http://docs.oracle.com/javase/6/docs/technotes/tools/index.html
JVM垃圾回收
http://www.oracle.com
- 读《Node.js项目实践:构建可扩展的Web应用》 ——引编程慢慢变成系统化的“砌砖活”
noaighost
Webnode.js
读《Node.js项目实践:构建可扩展的Web应用》
——引编程慢慢变成系统化的“砌砖活”
眼里的Node.JS
初初接触node是一年前的事,那时候年少不更事。还在纠结什么语言可以编写出牛逼的程序,想必每个码农都会经历这个月经性的问题:微信用什么语言写的?facebook为什么推荐系统这么智能,用什么语言写的?dota2的外挂这么牛逼,用什么语言写的?……用什么语言写这句话,困扰人也是阻碍
- 快速开发Android应用
rensanning
android
Android应用开发过程中,经常会遇到很多常见的类似问题,解决这些问题需要花时间,其实很多问题已经有了成熟的解决方案,比如很多第三方的开源lib,参考
Android Libraries 和
Android UI/UX Libraries。
编码越少,Bug越少,效率自然会高。
但可能由于 根本没听说过、听说过但没用过、特殊原因不能用、自己已经有了解决方案等等原因,这些成熟的解决
- 理解Java中的弱引用
tomcat_oracle
java工作面试
不久之前,我
面试了一些求职Java高级开发工程师的应聘者。我常常会面试他们说,“你能给我介绍一些Java中得弱引用吗?”,如果面试者这样说,“嗯,是不是垃圾回收有关的?”,我就会基本满意了,我并不期待回答是一篇诘究本末的论文描述。 然而事与愿违,我很吃惊的发现,在将近20多个有着平均5年开发经验和高学历背景的应聘者中,居然只有两个人知道弱引用的存在,但是在这两个人之中只有一个人真正了
- 标签输出html标签" target="_blank">关于标签输出html标签
xshdch
jsp
http://back-888888.iteye.com/blog/1181202
关于<c:out value=""/>标签的使用,其中有一个属性是escapeXml默认是true(将html标签当做转移字符,直接显示不在浏览器上面进行解析),当设置escapeXml属性值为false的时候就是不过滤xml,这样就能在浏览器上解析html标签,
&nb