面试题百日百刷-flink篇(二)

锁屏面试题百日百刷,每个工作日坚持更新面试题。请看到最后就能获取你想要的, 接下来的是今日的面试题:

1.Flink 的运行必须依赖 Hadoop组件吗?**

Flink可以完全独立于Hadoop,在不依赖Hadoop组件下运行。但是做为大数据的基础设施,Hadoop体系是任何大数据框架都绕不过去的。Flink可以集成众多Hadooop 组件,例如Yarn、Hbase、HDFS等等。例如,Flink可以和Yarn集成做资源调度,也可以读写HDFS,或者利用HDFS做检查点。

2.你们的Flink集群规模多大?**

大家注意,这个问题看起来是问你实际应用中的Flink集群规模,其实还隐藏着另一个问题:Flink可以支持多少节点的集群规模?在回答这个问题时候,可以将自己生产环节中的集群规模、节点、内存情况说明,同时说明部署模式(一般是Flink on Yarn),除此之外,用户也可以同时在小集群(少于5个节点)和拥有 TB 级别状态的上千个节点上运行 Flink 任务。

3.Flink的基础编程模型了解吗?

面试题百日百刷-flink篇(二)_第1张图片

上图是来自Flink官网的运行流程图。通过上图我们可以得知,Flink 程序的基本构建是数据输入来自一个 Source,Source 代表数据的输入端,经过 Transformation 进行转换,然后在一个或者多个Sink接收器中结束。数据流(stream)就是一组永远不会停止的数据记录流,而转换(transformation)是将一个或多个流作为输入,并生成一个或多个输出流的操作。执行时,Flink程序映射到 streaming dataflows,由流(streams)和转换操作

(transformation operators)组成。

4.Flink集群有哪些角色?各自有什么作用?

面试题百日百刷-flink篇(二)_第2张图片

Flink 程序在运行时主要有 TaskManager,JobManager,Client三种角色。其中JobManager扮演着集群中的管理者Master的角色,它是整个集群的协调者,负责接收Flink Job,协调检查点,Failover 故障恢复等,同时管理Flink集群中从节点TaskManager。TaskManager是实际负责执行计算的Worker,在其上执行Flink Job的一组Task,每个TaskManager负责管理其所在节点上的资源信息,如内存、磁盘、网络,在启动的时候将资源的状态向JobManager汇报。Client是Flink程序提交的客户端,当用户提交一个Flink程序时,会首先创建一个Client,该Client首先会对用户提交的Flink程序进行预处理,并提交到Flink集群中处理,所以Client需要从用户提交的Flink程序配置中获取JobManager的地址,并建立到JobManager的连接,将Flink Job提交给JobManager。

全部内容在git上,了解更多请点我头像或到我的主页去获得,谢谢**

你可能感兴趣的:(后端面试flink)