- Open3D 点云DBSCAN聚类算法
MelaCandy
算法聚类numpy计算机视觉图像处理3d
目录一、DBSCAN基本原理二、代码实现2.1关键函数2.2完整代码三、实现效果3.1原始点云3.2聚类后点云Open3D点云算法汇总及实战案例汇总的目录地址:Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客一、DBSCAN基本原理DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)是一种基于密度的聚类算法,
- html.partial mvc5,[ASP.NET Core Razor Pages系列教程]ASP.NET Core Razor Pages中的Partial Views(部分视图)(04)...
安静的小屁孩儿
html.partialmvc5
PartialViews(部分视图)什么是PartialViews?PartialViews(之后统称:部分视图)是包含了HTML代码片段和服务端代码的Razor文件,它同样以.cshtml为扩展名。部分视图可以被包含在任意数量的页面或者布局中。部分视图可以用来将复杂的页面分解成更小的单元,从而减少复杂性,同时也可以在团队开发中被复用。什么时候使用部分视图(PartialViews)部分视图可以处
- 事务回滚核心技术
KBkongbaiKB
java
一、事务回滚的数学本质与核心挑战1.1事务状态机模型操作执行持久化完成系统故障事务回滚ActivePartiallyCommittedCommittedFailedAborted1.2核心技术挑战矩阵问题维度单机事务分布式事务原子性保证存储引擎WAL日志二阶段提交协议隔离性实现MVCC多版本控制全局锁调度机制可见性管理事务ID版本链向量时钟同步回滚触发条件SQL执行异常/死锁网络分区/节点故障二、
- python 标准库之 functools 模块
36度道
python系列学习笔记python
functools模块提供了一系列用于处理函数的工具。其中,像partial可以创建一个新的可调用对象,这个对象固定了原函数的部分参数,有点像给函数穿上了“参数防护服”;reduce能对一个序列进行累积计算,就好比是一个勤劳的小会计,按顺序把序列里的数加起来或者做其他运算;wraps主要用于装饰器,它能帮助装饰器函数保留被装饰函数的元信息,比如函数名、文档字符串等,让被装饰函数“表里如一”。底层原
- rust学习笔记16-206.反转链表(递归)
水蜜桃one
学习笔记链表
rust函数递归在14中已经提到,接下来我们把206.反转链表,用递归法实现递归函数通常包含两个主要部分:基准条件(BaseCase):递归终止的条件,避免无限递归。递归步骤(RecursiveStep):将问题分解为更小的子问题,并调用自身来解决这些子问题。//Definitionforsingly-linkedlist.#[derive(PartialEq,Eq,Clone,Debug)]pu
- 部分标签数据集生成与过滤特定标签方法
阳光明媚大男孩
机器学习人工智能
完整代码总结这段代码的目的是通过构建一个部分标签学习(PartialLabelLearning,PLL)框架来生成一个包含部分标签的数据集,并且支持根据给定的标签列表对数据集进行筛选和过滤。代码包含了多个类和函数,主要分为以下几部分:数据预处理与加载:使用PyTorch和torchvision来加载CIFAR-10数据集,并对其进行标准化处理。部分标签数据集的生成:为每个样本生成多个候选标签,并模
- Multi-view graph convolutional networks with attention mechanism
小源er
图论和图神经网络机器学习机器学习深度学习人工智能
摘要传统的图卷积网络关注于如何高效的探索不同阶跳数(hops)的邻居节点的信息。但是目前的基于GCN的图网络模型都是构建在固定邻接矩阵上的即实际图的一个拓扑视角。当数据包含噪声或者图不完备时,这种方式会限制模型的表达能力。由于数据的测量或者收集会不可避免的会出现错误,因此基于固定结构的图模型表达能力是不充分的。本文提出了基于注意力机制的多视图图卷积网络,将拓扑结构的多个视图和基于注意力的特征聚合策
- Hessian 矩阵(海森矩阵)
Chen_Chance
矩阵算法机器学习
Hessian矩阵(海森矩阵)是一个包含二阶偏导数信息的方阵,在数学和优化中起着重要作用。对于一个多元函数,其Hessian矩阵是由其各个变量的二阶偏导数组成的矩阵。假设有一个函数f(x1,x2,…,xn)f(x_1,x_2,\dots,x_n)f(x1,x2,…,xn),其Hessian矩阵(H)的元素是:Hij=∂2f∂xi∂xjH_{ij}=\frac{\partial^2f}{\parti
- AttributeError: partially initialized module ‘cv2‘ has no attribute ‘_registerMatType‘ (most likely
hunter206206
pythonpyopencvpython
这个错误表明在导入cv2(OpenCV)模块时,发生了循环导入问题,导致模块未能正确初始化。具体来说,cv2模块在初始化过程中尝试调用_registerMatType方法,但由于循环导入,该方法尚未定义。以下是可能的原因和解决方法:1.OpenCV安装问题可能是OpenCV安装不完整或损坏。可以尝试重新安装OpenCV。解决方法:使用pip重新安装OpenCV:pipuninstallopencv
- 解决 Python 中 `cv2` 模块部分初始化导致的 `AttributeError`
Leuanghing
python开发语言
解决Python中cv2模块部分初始化导致的AttributeError在Python开发中,尤其是使用OpenCV库进行图像处理时,可能会遇到一些令人困惑的错误。今天,我们就来探讨一个常见的错误:AttributeError:partiallyinitializedmodule'cv2'hasnoattribute'gapi_wip_gst_GStreamerPipeline',并提供一个有效的
- C# 分部类 详解
千亦学不会编程
c#开发语言
从C#2.0起支持分部类。分部类:是一个类的多个部分,编译器可把它们合并成一个完整的类。分部类的目的:将一个类的定义划分到多个文件中。通过分部类,由工具处理的文件可独立于开发者手动编码的文件。1.1定义分部类使用class前的上下文关键字partial来声明分部类。例子:partialclassProgram{}1.2分部方法从C#3.0引入分部方法概念,对C#2.0的分部类进行了扩展。分部方法只
- MasterDetail页调试错误:CS0263
IT落英
bug
写WPF页面的逻辑的时候,遇到了这个问题,百度了好久,记录一下问题描述:MasterDetailPage分部声明不能指定不同的基类主要是xml的问题在XAML主页中是MasterDetailPage,而不是ContentPage。做出如下修改publicpartialclassMainPage:MasterDetailPage
- mysqldump踩坑!!! 忽略Warning 导致主备不同步
喝醉酒的小白
MySQL数据库mysql服务器
Warning:ApartialdumpfromaserverthathasGTIDswillbydefaultincludetheGTIDsofalltransactions,eventhosethatchangedsuppressedpartsofthedatabase.Ifyoudon’twanttorestoreGTIDs,pass--set-gtid-purged=OFF.Tomakea
- 手写机器学习算法系列——K-Means聚类算法(一)
木有鱼丸223
手写机器学习算法系列机器学习算法聚类
代码仓库(数字空间项目,GN可上)不想看的话,我也将代码上传到本博客中。1.聚类算法简介在数据科学和机器学习领域,聚类(Clustering)算法是一种无监督学习方法,它将相似的对象分到同一个组,而不同的对象则被分到不同的组。这种算法的主要目标是根据数据的特征进行分组,以此找出数据的内在结构。聚类算法的一个核心特点就是它并不需要预先知道数据的类别,而是通过算法自动进行分组。在实际应用中,我们常见的
- 机器学习之KMeans算法
Mr终游
机器学习机器学习算法kmeans
目录一、KMeans的核心思想二、KMeans算法流程三、KMeans的关键点1.优点:2.缺点:四、如何确定最佳k值1.肘部法则2.轮廓系数五、Kmeans的典型应用场景六、代码示例KMeans是一种广泛使用的无监督学习算法,主要用于聚类分析(Clustering)。它的目标是将数据集划分为K个互不重叠的子集(簇,Cluster),使得同一簇内的数据点尽可能相似,不同簇之间的数据点尽可能差异显著
- 神经网络中梯度计算求和公式求导问题
serve the people
日常琐问神经网络机器学习算法
以下是公式一推导出公式二的过程。表达式一∂E∂wjk=−2(tk−ok)⋅sigmoid(∑jwjk⋅oj)⋅(1−sigmoid(∑jwjk⋅oj))⋅∂∂wjk(∑jwjk⋅oj)\frac{\partialE}{\partialw_{jk}}=-2(t_k-o_k)\cdot\text{sigmoid}\left(\sum_jw_{jk}\cdoto_j\right)\cdot(1-\tex
- Redis-主从架构
左灯右行的爱情
redis架构数据库
主从架构主从架构什么是主从架构基本架构复制机制的工作原理1.全量复制(FullSynchronization)2.部分复制(PartialSynchronization)3.PSYNC2机制(Redis4.0+)主从架构的关键技术细节1.复制积压缓冲区(ReplicationBacklog)2.复制偏移量(ReplicationOffset)3.主节点ID(RunID)什么是PSYNC2核心问题技
- Triplet Loss原理及 Python实现
AIGC_ZY
DiffusionModelspython深度学习机器学习
Tripletloss最初是谷歌在FaceNet:AUnifiedEmbeddingforFaceRecognitionandClustering论文中提出的,可以学到较好的人脸的embeddingTripletLoss是一种用于训练特征嵌入(featureembedding)的损失函数,广泛应用于人脸识别、图像检索等需要度量相似性的任务。其核心思想是通过学习将同类样本的嵌入距离拉近,不同类样本的
- COMP333 public websites
后端
Redistributingthisfile(includingpartially)toCourseHeroorotherpublicwebsitesisstrictlyprohibited.COMP3334-ProjectSection1:OverviewOnlinestorageisapopularapplicationinourdailylife.Withonlinestorage,ause
- Delta Lake的Liquid Clustering
不确定性确定你我
大数据
DeltaLake的LiquidClustering(液态聚类)是一种高效的数据布局优化技术,旨在解决传统分区和Z-Order排序的局限性。它通过自动化和增量式的数据布局优化,提升查询性能并减少存储和计算成本。以下是其原理、实现方式以及实际场景中的应用解析。LiquidClustering的核心原理动态数据布局:LiquidClustering基于树形算法,优化数据文件的大小和数量,使其均匀分布。
- selenium5
xlxlxl_
seleniumpython开发语言
0.EC模块presence_of_element_located(locator)locator:定位器数据类型,元组("元素定位方式","对应的定位方式值")元素的定位方式:8种"id","classname","partiallinktext"对应的定位方式值:id属性值xpath/css表达式示例:("id","userA")("classname","telA")("linktext",
- 2小时学懂【多元统计分析】——聚类分析(R语言)
木小鹿
多元统计R语言代码机器学习算法人工智能开发语言数据挖掘数据分析
聚类分析是一种无监督学习方法,用于将相似的观测值(或对象)分组到集群中。下面我将展示如何使用几种常见的聚类方法:K-均值(K-means)、层次聚类(HierarchicalClustering)和DBSCAN。1.K-均值聚类(K-meansClustering)K-均值是一种迭代的聚类算法,它将数据划分为K个预定义的集群。#加载需要的包library(cluster)#假设我们有一些二维数据s
- 机器学习之经典算法(十六) Birch算法
AI专家
机器之心修炼之路
(一)Birch算法简介:BIRCH(BalancedIterativeReducingandClusteringUsingHierarchies)全称是:利用层次方法的平衡迭代规约和聚类。BIRCH算法是1996年由TianZhang提出来的。Birch算法就是通过聚类特征(CF)形成一个聚类特征树,root层的CF个数就是聚类个数。整个算法实现共分为4个阶段:1.扫描所有数据,建立初始化的CF
- 工具
前端javascript
typescript类型工具ReadonlyinterfaceA{a:string;b:number;c:number[];}typeC=Readonlyconstc:C={a:'',b:18,c:[1,2]}c.a="1"//报红工具PartialinterfaceA{a:string;b:number;c:number[];}typeB=Partialconsta:A={a:'',b:18,c
- AI人工智能机器学习之聚类分析
rockfeng0
人工智能机器学习sklearn
1、概要 本篇学习AI人工智能机器学习之聚类分析,以KMeans、AgglomerativeClustering、DBSCAN为例,从代码层面讲述机器学习中的聚类分析。2、聚类分析-简介聚类分析是一种无监督学习的方法,用于将数据集中的样本划分为不同的组(簇),使得同一组中的样本相似度较高,而不同组之间的样本相似度较低。sklearn.cluster提供了多种聚类算法K均值聚类(K-MeansCl
- 递归方法练习
白羊无名小猪
C#
usingSystem;usingSystem.Collections.Generic;usingSystem.ComponentModel;usingSystem.Windows.Forms;namespace递归练习2{publicpartialclassForm1:Form{publicForm1(){InitializeComponent();}//////开始计算/////////pri
- 有限差分法
~夕上林~
概率论线性代数数据分析
文章目录泰勒展开有限差分的基本原理一阶导数差分前向差分后向差分中心差分二阶导数差分关于xxx方向的二阶导数关于yyy方向的二阶导数混合二阶导数∂2u∂x∂y\frac{\partial^{2}u}{\partialx\partialy}∂x∂y∂2u有限差分的分类与特点分类显式差分格式隐式差分格式特点优点缺点发展趋势有限差分法的核心思想是将连续的空间和时间离散化,把微分方程中的导数用差分近似代替,
- 对比学习小综述
wintercoming111
学习
对比学习的目标是将相似样本的表示(Representation)拉近,不相似样本的表示拉远。通过数据增强、损失函数、表示学习目标等步骤实现。分类(1)基于单视角的方法(InstanceDiscrimination)典型代表:SimCLR,MoCo特点:将每个样本视为一个独立类,无需额外的标注信息。适用场景:数据无标注或弱标注的场景。(2)基于聚类的方法(Clustering-BasedContra
- 数据标注中的归类与定义,从聚类,相关,关联,回归四个方面分析
小宝哥Code
人工智能训练师聚类回归数据挖掘
在数据标注和AI训练过程中,数据的归类与定义是关键步骤,不同的数据分析方法可以用于不同的场景。本文从**聚类(Clustering)、相关(Correlation)、关联(Association)、回归(Regression)**四个角度探讨数据标注的优化,并结合Python代码示例进行说明。1.聚类(Clustering)1.1概念聚类是一种无监督学习方法,它将相似的数据点分为同一个组,而无需预
- Open3d处理点云数据-改进的欧式聚类分割算法(六)
点云客户
算法聚类机器学习
1.概述1.1传统欧式聚类分割算法欧式聚类算法(EuclideanClustering)是一种将点云数据分割成不同聚类(簇)的算法。它是点云分割中的一种常用方法,旨在将距离比较近的点分为同一簇,从而识别出不同的物体或结构。这个算法主要适用于包含较小噪音和具有一定距离差异的点云数据。基本思想:(1)选择一个种子点(SeedPoint)作为当前簇的起始点。(2)遍历所有未分类的点,计算它们与种子点的距
- 书其实只有三类
西蜀石兰
类
一个人一辈子其实只读三种书,知识类、技能类、修心类。
知识类的书可以让我们活得更明白。类似十万个为什么这种书籍,我一直不太乐意去读,因为单纯的知识是没法做事的,就像知道地球转速是多少一样(我肯定不知道),这种所谓的知识,除非用到,普通人掌握了完全是一种负担,维基百科能找到的东西,为什么去记忆?
知识类的书,每个方面都涉及些,让自己显得不那么没文化,仅此而已。社会认为的学识渊博,肯定不是站在
- 《TCP/IP 详解,卷1:协议》学习笔记、吐槽及其他
bylijinnan
tcp
《TCP/IP 详解,卷1:协议》是经典,但不适合初学者。它更像是一本字典,适合学过网络的人温习和查阅一些记不清的概念。
这本书,我看的版本是机械工业出版社、范建华等译的。这本书在我看来,翻译得一般,甚至有明显的错误。如果英文熟练,看原版更好:
http://pcvr.nl/tcpip/
下面是我的一些笔记,包括我看书时有疑问的地方,也有对该书的吐槽,有不对的地方请指正:
1.
- Linux—— 静态IP跟动态IP设置
eksliang
linuxIP
一.在终端输入
vi /etc/sysconfig/network-scripts/ifcfg-eth0
静态ip模板如下:
DEVICE="eth0" #网卡名称
BOOTPROTO="static" #静态IP(必须)
HWADDR="00:0C:29:B5:65:CA" #网卡mac地址
IPV6INIT=&q
- Informatica update strategy transformation
18289753290
更新策略组件: 标记你的数据进入target里面做什么操作,一般会和lookup配合使用,有时候用0,1,1代表 forward rejected rows被选中,rejected row是输出在错误文件里,不想看到reject输出,将错误输出到文件,因为有时候数据库原因导致某些column不能update,reject就会output到错误文件里面供查看,在workflow的
- 使用Scrapy时出现虽然队列里有很多Request但是却不下载,造成假死状态
酷的飞上天空
request
现象就是:
程序运行一段时间,可能是几十分钟或者几个小时,然后后台日志里面就不出现下载页面的信息,一直显示上一分钟抓取了0个网页的信息。
刚开始已经猜到是某些下载线程没有正常执行回调方法引起程序一直以为线程还未下载完成,但是水平有限研究源码未果。
经过不停的google终于发现一个有价值的信息,是给twisted提出的一个bugfix
连接地址如下http://twistedmatrix.
- 利用预测分析技术来进行辅助医疗
蓝儿唯美
医疗
2014年,克利夫兰诊所(Cleveland Clinic)想要更有效地控制其手术中心做膝关节置换手术的费用。整个系统每年大约进行2600例此类手术,所以,即使降低很少一部分成本,都可以为诊 所和病人节约大量的资金。为了找到适合的解决方案,供应商将视野投向了预测分析技术和工具,但其分析团队还必须花时间向医生解释基于数据的治疗方案意味着 什么。
克利夫兰诊所负责企业信息管理和分析的医疗
- java 线程(一):基础篇
DavidIsOK
java多线程线程
&nbs
- Tomcat服务器框架之Servlet开发分析
aijuans
servlet
最近使用Tomcat做web服务器,使用Servlet技术做开发时,对Tomcat的框架的简易分析:
疑问: 为什么我们在继承HttpServlet类之后,覆盖doGet(HttpServletRequest req, HttpServetResponse rep)方法后,该方法会自动被Tomcat服务器调用,doGet方法的参数有谁传递过来?怎样传递?
分析之我见: doGet方法的
- 揭秘玖富的粉丝营销之谜 与小米粉丝社区类似
aoyouzi
揭秘玖富的粉丝营销之谜
玖富旗下悟空理财凭借着一个微信公众号上线当天成交量即破百万,第七天成交量单日破了1000万;第23天时,累计成交量超1个亿……至今成立不到10个月,粉丝已经超过500万,月交易额突破10亿,而玖富平台目前的总用户数也已经超过了1800万,位居P2P平台第一位。很多互联网金融创业者慕名前来学习效仿,但是却鲜有成功者,玖富的粉丝营销对外至今仍然是个谜。
近日,一直坚持微信粉丝营销
- Java web的会话跟踪技术
百合不是茶
url会话Cookie会话Seession会话Java Web隐藏域会话
会话跟踪主要是用在用户页面点击不同的页面时,需要用到的技术点
会话:多次请求与响应的过程
1,url地址传递参数,实现页面跟踪技术
格式:传一个参数的
url?名=值
传两个参数的
url?名=值 &名=值
关键代码
- web.xml之Servlet配置
bijian1013
javaweb.xmlServlet配置
定义:
<servlet>
<servlet-name>myservlet</servlet-name>
<servlet-class>com.myapp.controller.MyFirstServlet</servlet-class>
<init-param>
<param-name>
- 利用svnsync实现SVN同步备份
sunjing
SVN同步E000022svnsync镜像
1. 在备份SVN服务器上建立版本库
svnadmin create test
2. 创建pre-revprop-change文件
cd test/hooks/
cp pre-revprop-change.tmpl pre-revprop-change
3. 修改pre-revprop-
- 【分布式数据一致性三】MongoDB读写一致性
bit1129
mongodb
本系列文章结合MongoDB,探讨分布式数据库的数据一致性,这个系列文章包括:
数据一致性概述与CAP
最终一致性(Eventually Consistency)
网络分裂(Network Partition)问题
多数据中心(Multi Data Center)
多个写者(Multi Writer)最终一致性
一致性图表(Consistency Chart)
数据
- Anychart图表组件-Flash图转IMG普通图的方法
白糖_
Flash
问题背景:项目使用的是Anychart图表组件,渲染出来的图是Flash的,往往一个页面有时候会有多个flash图,而需求是让我们做一个打印预览和打印功能,让多个Flash图在一个页面上打印出来。
那么我们打印预览的思路是获取页面的body元素,然后在打印预览界面通过$("body").append(html)的形式显示预览效果,结果让人大跌眼镜:Flash是
- Window 80端口被占用 WHY?
bozch
端口占用window
平时在启动一些可能使用80端口软件的时候,会提示80端口已经被其他软件占用,那一般又会有那些软件占用这些端口呢?
下面坐下总结:
1、web服务器是最经常见的占用80端口的,例如:tomcat , apache , IIS , Php等等;
2
- 编程之美-数组的最大值和最小值-分治法(两种形式)
bylijinnan
编程之美
import java.util.Arrays;
public class MinMaxInArray {
/**
* 编程之美 数组的最大值和最小值 分治法
* 两种形式
*/
public static void main(String[] args) {
int[] t={11,23,34,4,6,7,8,1,2,23};
int[]
- Perl正则表达式
chenbowen00
正则表达式perl
首先我们应该知道 Perl 程序中,正则表达式有三种存在形式,他们分别是:
匹配:m/<regexp>;/ (还可以简写为 /<regexp>;/ ,略去 m)
替换:s/<pattern>;/<replacement>;/
转化:tr/<pattern>;/<replacemnt>;
- [宇宙与天文]行星议会是否具有本行星大气层以外的权力呢?
comsci
举个例子: 地球,地球上由200多个国家选举出一个代表地球联合体的议会,那么现在地球联合体遇到一个问题,地球这颗星球上面的矿产资源快要采掘完了....那么地球议会全体投票,一致通过一项带有法律性质的议案,既批准地球上的国家用各种技术手段在地球以外开采矿产资源和其它资源........
&
- Oracle Profile 使用详解
daizj
oracleprofile资源限制
Oracle Profile 使用详解 转
一、目的:
Oracle系统中的profile可以用来对用户所能使用的数据库资源进行限制,使用Create Profile命令创建一个Profile,用它来实现对数据库资源的限制使用,如果把该profile分配给用户,则该用户所能使用的数据库资源都在该profile的限制之内。
二、条件:
创建profile必须要有CREATE PROFIL
- How HipChat Stores And Indexes Billions Of Messages Using ElasticSearch & Redis
dengkane
elasticsearchLucene
This article is from an interview with Zuhaib Siddique, a production engineer at HipChat, makers of group chat and IM for teams.
HipChat started in an unusual space, one you might not
- 循环小示例,菲波拉契序列,循环解一元二次方程以及switch示例程序
dcj3sjt126com
c算法
# include <stdio.h>
int main(void)
{
int n;
int i;
int f1, f2, f3;
f1 = 1;
f2 = 1;
printf("请输入您需要求的想的序列:");
scanf("%d", &n);
for (i=3; i<n; i
- macbook的lamp环境
dcj3sjt126com
lamp
sudo vim /etc/apache2/httpd.conf
/Library/WebServer/Documents
是默认的网站根目录
重启Mac上的Apache服务
这个命令很早以前就查过了,但是每次使用的时候还是要在网上查:
停止服务:sudo /usr/sbin/apachectl stop
开启服务:s
- java ArrayList源码 下
shuizhaosi888
ArrayList源码
版本 jdk-7u71-windows-x64
JavaSE7 ArrayList源码上:http://flyouwith.iteye.com/blog/2166890
/**
* 从这个列表中移除所有c中包含元素
*/
public boolean removeAll(Collection<?> c) {
- Spring Security(08)——intercept-url配置
234390216
Spring Securityintercept-url访问权限访问协议请求方法
intercept-url配置
目录
1.1 指定拦截的url
1.2 指定访问权限
1.3 指定访问协议
1.4 指定请求方法
1.1 &n
- Linux环境下的oracle安装
jayung
oracle
linux系统下的oracle安装
本文档是Linux(redhat6.x、centos6.x、redhat7.x) 64位操作系统安装Oracle 11g(Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production),本文基于各种网络资料精心整理而成,共享给有需要的朋友。如有问题可联系:QQ:52-7
- hotspot虚拟机
leichenlei
javaHotSpotjvm虚拟机文档
JVM参数
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html
JVM工具
http://docs.oracle.com/javase/6/docs/technotes/tools/index.html
JVM垃圾回收
http://www.oracle.com
- 读《Node.js项目实践:构建可扩展的Web应用》 ——引编程慢慢变成系统化的“砌砖活”
noaighost
Webnode.js
读《Node.js项目实践:构建可扩展的Web应用》
——引编程慢慢变成系统化的“砌砖活”
眼里的Node.JS
初初接触node是一年前的事,那时候年少不更事。还在纠结什么语言可以编写出牛逼的程序,想必每个码农都会经历这个月经性的问题:微信用什么语言写的?facebook为什么推荐系统这么智能,用什么语言写的?dota2的外挂这么牛逼,用什么语言写的?……用什么语言写这句话,困扰人也是阻碍
- 快速开发Android应用
rensanning
android
Android应用开发过程中,经常会遇到很多常见的类似问题,解决这些问题需要花时间,其实很多问题已经有了成熟的解决方案,比如很多第三方的开源lib,参考
Android Libraries 和
Android UI/UX Libraries。
编码越少,Bug越少,效率自然会高。
但可能由于 根本没听说过、听说过但没用过、特殊原因不能用、自己已经有了解决方案等等原因,这些成熟的解决
- 理解Java中的弱引用
tomcat_oracle
java工作面试
不久之前,我
面试了一些求职Java高级开发工程师的应聘者。我常常会面试他们说,“你能给我介绍一些Java中得弱引用吗?”,如果面试者这样说,“嗯,是不是垃圾回收有关的?”,我就会基本满意了,我并不期待回答是一篇诘究本末的论文描述。 然而事与愿违,我很吃惊的发现,在将近20多个有着平均5年开发经验和高学历背景的应聘者中,居然只有两个人知道弱引用的存在,但是在这两个人之中只有一个人真正了
- 标签输出html标签" target="_blank">关于标签输出html标签
xshdch
jsp
http://back-888888.iteye.com/blog/1181202
关于<c:out value=""/>标签的使用,其中有一个属性是escapeXml默认是true(将html标签当做转移字符,直接显示不在浏览器上面进行解析),当设置escapeXml属性值为false的时候就是不过滤xml,这样就能在浏览器上解析html标签,
&nb