第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接
1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/flumeng-kafka-plugin。将package目录中的flumeng-kafka-plugin.jar拷贝到Flume安装目录的lib目录下
2. 将Kakfa安装目录libs目录下的如下jar包拷贝到Flume安装目录的lib目录下
kafka_2.10-0.8.1.1.jar
scala-library-2.10.1.jar
metrics-core-2.2.0.jar
3.添加agent配置
producer.sources = s producer.channels = c producer.sinks = r #source section #producer.sources.s.type = seq producer.sources.s.type = netcat producer.sources.s.bind = localhost producer.sources.s.port = 44444 producer.sources.s.channels = c # Each sink's type must be defined producer.sinks.r.type = org.apache.flume.plugins.KafkaSink producer.sinks.r.metadata.broker.list=127.0.0.1:9092 producer.sinks.r.partition.key=0 producer.sinks.r.partitioner.class=org.apache.flume.plugins.SinglePartition producer.sinks.r.serializer.class=kafka.serializer.StringEncoder producer.sinks.r.request.required.acks=0 producer.sinks.r.max.message.size=1000000 producer.sinks.r.producer.type=sync producer.sinks.r.custom.encoding=UTF-8 ##定义Kafka接收消息的Topic的名字 producer.sinks.r.custom.topic.name=test #Specify the channel the sink should use producer.sinks.r.channel = c # Each channel's type is defined. producer.channels.c.type = memory producer.channels.c.capacity = 1000
3.1 上面指定了sink的类型为KafkaSink,目的是将日志送往Kafka消息队列,分区类为SinglePartition
3.2 指定topic的名字为test
3.3 指定Flume的消息源来自于netcat,(localhost,44444)
4. 启动Flume
./flume-ng agent -f ../conf/kafka.conf -c . -n producer
指定配置文件和agent的名字
Kafka配置
5. 启动Kafka
./kafka-server-start.sh ../config/server.properties
5.1 启动Kafka依赖的Zookeeper,添加topic名字为test,详见
5.2 启动Kakfa的消息接收进程
bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic test --from-beginning
6.启动telnet,输入netcat接受的数据
telnet localhost 44444
数据流转过程
1. 在telnet终端输入数据,被Flume的source接受
2. Flume将数据写入到Kafka消息队列中,在Flume_Kafka的插件中有向Kafka发送消息的逻辑
3. Kafka消息消费者,监听到Kafka队列中来了消息,那么就在Kakfa的消息接收端看到控制台上有输出
问题:
1. 此处Kafka使用SinglePartition的方式接收消息,如果是Kafka集群,那么Flume如何写入消息到一个topic的多个partition中
2. Flume的消息源是监听端口44444实现的,如何监听日志文件呢?日志文件可以自动增长,另外也会自动的创建新的日志文件,这用Kafka如何处理?
对于监听日志文件,应该使用Flume结合Log4J的方式,有个专门针对Flume的Log4J Appender,可以将写入到文件的内容通过Appender发送给Flume作为数据源,Flume的源收到数据后,就可以通过Channel发送给Sink(此处的Sink是KafkaSingk)
关于Kafka的Partition
1. 第一个问题,SinglePartition的实现
package org.apache.flume.plugins; import kafka.producer.Partitioner; import kafka.utils.VerifiableProperties; import org.slf4j.Logger; import org.slf4j.LoggerFactory; public class SinglePartition implements Partitioner<String> { public SinglePartition(VerifiableProperties props) { } @Override public int partition(String key, int numberOfPartions) { return 0; } }
可见,只要把partition方法实现为 key.hashCode()%numberOfPartitions即可
2. 第二个问题,如何设置Kafka的一个topic几个partition?
在创建topic时,就需要指定partition的个数
bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test
建立一个分区数为17,复制因为为3的topic,看看zk上记录了哪些信息,
bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 3 --partitions 17 --topic test
2.1. 报错:也就是说,复制因子不能比brokers的个数大
[hadoop@hadoop kafka_2.10-0.8.1.1]$ bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 3 --partitions 17 --topic test_many_partitions Error while executing topic command replication factor: 3 larger than available brokers: 1 kafka.admin.AdminOperationException: replication factor: 3 larger than available brokers: 1 at kafka.admin.AdminUtils$.assignReplicasToBrokers(AdminUtils.scala:70) at kafka.admin.AdminUtils$.createTopic(AdminUtils.scala:155) at kafka.admin.TopicCommand$.createTopic(TopicCommand.scala:86) at kafka.admin.TopicCommand$.main(TopicCommand.scala:50) at kafka.admin.TopicCommand.main(TopicCommand.scala)
2.2 新建了topic后,Kafka server日志显示
[2015-02-14 02:53:53,526] INFO Completed load of log test_many_partitions-4 with log end offset 0 (kafka.log.Log) [2015-02-14 02:53:53,526] INFO Created log for partition [test_many_partitions,4] in /tmp/kafka-logs with properties {segment.index.bytes -> 10485760, file.delete.delay.ms -> 60000, segment.bytes -> 536870912, flush.ms -> 9223372036854775807, delete.retention.ms -> 86400000, index.interval.bytes -> 4096, retention.bytes -> -1, cleanup.policy -> delete, segment.ms -> 604800000, max.message.bytes -> 1000012, flush.messages -> 9223372036854775807, min.cleanable.dirty.ratio -> 0.5, retention.ms -> 604800000}. (kafka.log.LogManager) [2015-02-14 02:53:53,527] WARN Partition [test_many_partitions,4] on broker 0: No checkpointed highwatermark is found for partition [test_many_partitions,4] (kafka.cluster.Partition) [2015-02-14 02:53:53,540] INFO Completed load of log test_many_partitions-13 with log end offset 0 (kafka.log.Log) [2015-02-14 02:53:53,541] INFO Created log for partition [test_many_partitions,13] in /tmp/kafka-logs with properties {segment.index.bytes -> 10485760, file.delete.delay.ms -> 60000, segment.bytes -> 536870912, flush.ms -> 9223372036854775807, delete.retention.ms -> 86400000, index.interval.bytes -> 4096, retention.bytes -> -1, cleanup.policy -> delete, segment.ms -> 604800000, max.message.bytes -> 1000012, flush.messages -> 9223372036854775807, min.cleanable.dirty.ratio -> 0.5, retention.ms -> 604800000}. (kafka.log.LogManager) [2015-02-14 02:53:53,541] WARN Partition [test_many_partitions,13] on broker 0: No checkpointed highwatermark is found for partition [test_many_partitions,13] (kafka.cluster.Partition) [2015-02-14 02:53:53,554] INFO Completed load of log test_many_partitions-1 with log end offset 0 (kafka.log.Log) [2015-02-14 02:53:53,555] INFO Created log for partition [test_many_partitions,1] in /tmp/kafka-logs with properties {segment.index.bytes -> 10485760, file.delete.delay.ms -> 60000, segment.bytes -> 536870912, flush.ms -> 9223372036854775807, delete.retention.ms -> 86400000, index.interval.bytes -> 4096, retention.bytes -> -1, cleanup.policy -> delete, segment.ms -> 604800000, max.message.bytes -> 1000012, flush.messages -> 9223372036854775807, min.cleanable.dirty.ratio -> 0.5, retention.ms -> 604800000}. (kafka.log.LogManager) [2015-02-14 02:53:53,555] WARN Partition [test_many_partitions,1] on broker 0: No checkpointed highwatermark is found for partition [test_many_partitions,1] (kafka.cluster.Partition)
3.3 查看zk上关于具有多partition的topic,结果如下:
17个partition
[zk: localhost:2181(CONNECTED) 26] ls /brokers/topics [test_many_partitions, test] [zk: localhost:2181(CONNECTED) 27] ls /brokers/topics/test_many_partitions [partitions] [zk: localhost:2181(CONNECTED) 28] ls /brokers/topics/test_many_partitions/partitions [15, 16, 13, 14, 11, 12, 3, 2, 1, 10, 0, 7, 6, 5, 4, 9, 8] [zk: localhost:2181(CONNECTED) 29]
1个partition
[zk: localhost:2181(CONNECTED) 30] ls /brokers/topics/test [partitions] [zk: localhost:2181(CONNECTED) 31] ls /brokers/topics/test/partitions [0]
参考:
https://github.com/beyondj2ee/flumeng-kafka-plugin
http://blog.csdn.net/weijonathan/article/details/18301321
http://liyonghui160com.iteye.com/blog/2173235