- 鸿蒙 @ohos.animator (动画)
淼学派对
harmonyos华为
鸿蒙@ohos.animator(动画)在鸿蒙Next开发中,@ohos.animator模块提供了强大的动画功能,支持属性动画、帧动画等多种动画效果。通过@ohos.animator,开发者可以轻松实现复杂的动画效果,提升应用的用户体验。本文将详细介绍如何使用@ohos.animator模块实现动画效果,并提供一些实际代码示例。一、动画模块的基本概念在鸿蒙Next中,动画可以分为以下几类:属性动
- 证券交易系统核心技术解析:LinkTrader 的毫秒级响应架构与风控实践
Ashlee_code
架构pythonjavac++
一、行业痛点:为什么传统交易系统正在被淘汰?2024年,证券行业guweng22346的技术竞争已从“功能完备”转向**“速度+智能”的极限博弈**。以下是传统系统的三大致命缺陷:数据延迟:非官方行情源导致套利窗口丢失(实测延迟普遍>0.1秒);风控低效:依赖人工监控,凌晨时段风险拦截率不足30%;扩展性差:单体架构下订单处理峰值低于10万/秒,极易崩溃。典型案例:某券商因系统延迟0.05秒,单日
- 音频 Alsa、Framework及Android
‘禹’你一起
后端
目录1Alsa、Framework及Android1.1ALSA架构简介图11.2ALSA架构简介图21.3ALSA架构简介图31.4ALSA架构简介图41.5ALSA架构简介图51.6ALSA架构简介图61.8音频代码1Alsa、Framework及Android目前,linux系统常用的音频驱动有两种形式:alsa和oss。Alsa:现在是linux下音频驱动的主要形式,与简单的oss兼容。o
- 嵌入式开发之STM32学习笔记day06
小程同学>o<
嵌入式学习之STM32stm32学习笔记
基于STM32F103C8T6的开发实践——从入门到精通011.引言STM32系列微控制器是STMicroelectronics推出的一款高性能、低功耗的32位微控制器,广泛应用于嵌入式系统中。STM32F103C8T6是其中非常受欢迎的一款,凭借其强大的性能、丰富的外设接口和低廉的价格,成为了开发者的首选之一。本文将通过实例,详细介绍如何基于STM32F103C8T6进行开发,并带领读者完成从简
- ## centos7搭建nfs高可用共享存储
weixin_45674361
高可用部署linux服务器centosnfs运维
centos7搭建nfs双机热备的高可用共享存储本文通过使用keepalived+nfs+rsync,解决了主从服务器双向同步和客户端挂载失效的问题,实现了nfs文件系统双机热备。名称IP地址客户端192.168.1.1服务端服务器1192.168.1.100服务端服务器2192.168.1.200实施步骤keepalived部署在192.168.1.100和192.168.1.200上执行安装依
- 前端缓存接口数据
jjjjjjjjj¢
笔记前端
在前端缓存接口数据时,可以结合浏览器缓存策略、前端存储(localStorage、sessionStorage、IndexedDB)、内存缓存(变量存储)、ServiceWorker等方式,选择适合的方案。使用浏览器HTTP缓存(推荐,依赖后端支持)如果接口数据不会频繁变化,可以使用HTTP缓存策略(强缓存+协商缓存),减少不必要的请求。后端设置Cache-Control在接口响应头中,服务器可以
- 基于Gradio实现的增删改查(CRUD)模板系统设计方案
大霸王龙
pythongradio
基于Gradio实现的增删改查(CRUD)模板系统设计方案,结合了交互界面优化与数据持久化方案,支持本地JSON存储和动态界面更新:一、系统架构设计数据存储层采用JSON文件实现数据持久化(data.json)数据结构示例:{"items":[{"id":1,"name":"示例项目","category":"测试","status":"进行中"}]}界面交互层使用gr.Blocks实现多组件布局
- pyqt 上传文件或者文件夹打包压缩文件并添加密码并将密码和目标文件信息保存在json文件
大霸王龙
pyqtjson
一、完整代码实现importsysimportosimportjsonimportpyzipperfromdatetimeimportdatetimefromPyQt5.QtWidgetsimport(QApplication,QWidget,QVBoxLayout,QHBoxLayout,QPushButton,QLineEdit,QLabel,QFileDialog,QMessageBox,Q
- pytorch 天花板级别的知识点 你可以不会用 但是不能不知道
小赖同学啊
人工智能pytorch人工智能python
PyTorch的高级知识涵盖了从模型优化到分布式训练的广泛内容,适合已经掌握基础知识的开发者进一步提升技能。以下是PyTorch的高级知识点,详细且全面:1.模型优化与加速1.1混合精度训练定义:使用半精度(FP16)和单精度(FP32)混合训练,减少内存占用并加速计算。实现:使用torch.cuda.amp模块。示例:fromtorch.cuda.ampimportautocast,GradSc
- 【GPT入门】第23课 langchain serve介绍
*星星之火*
大模型gptlangchain
【GPT入门】第23课langchainserve介绍1.langchain介绍2.思路3.代码1.langchain介绍langserve是一个用于简化LangChain应用部署的工具,它可以将使用LangChain构建的链(chains)、代理(agents)等组件快速转化为RESTfulAPI服务,下面从多个方面详细介绍它的作用:1.简化部署流程一键部署为API:LangChain可用于构建
- 【GPT入门】第24课 langfuse介绍
*星星之火*
大模型gpt
【GPT入门】第24课langfuse介绍1.langfuse概念与作用2.代码3.页面效果4.设计模式1.装饰器模式2.上下文管理模式1.langfuse概念与作用Langfuse是一款专为大规模语言模型(LLM)应用开发设计的开源平台。其作用主要包括以下几个方面:提升开发效率:通过消除LLM应用构建与运维的复杂性,让开发者、运维团队及产品经理能更专注于核心开发与迭代优化,减少在监控与优化方面的
- 【GPT入门】第20课 langchain的function calling 初步体验
*星星之火*
大模型gptlangchainpython
【GPT入门】第20课langchain的functioncalling初步体验1.langchain的functioncalling非常简洁2.代码3.执行结果:1.langchain的functioncalling非常简洁在方法名说明方法用途和参数作用增加@tool标签langchain方法自动把@tool转为方法定义,后续方法调用都很简洁下面代码用支持单函数与多函数调用,自己体验一下quer
- 情感分析任务的概述
阿你不是
python开发语言
一、情感分析的概述1、什么是情感分析情感分析,也称为情感分类,是一种自然语言处理的任务,用于分析文本、语音或其他形式的数据中所包含的情感倾向。其目标是判断数据表达的情感是积极的(Positive)、消极的(Negative)还是中立的(Neutral),或者进一步细化为更复杂的情感类别(如愤怒、喜悦、悲伤等)。2、情感分析的主要应用场景1)商业领域:情感分析主要进行产品评价分析,从客户和买家的评价
- 一个简单的日志类Logger
qinfen123456
单片机嵌入式硬件c++学习笔记开发语言
实现一个C++简单日志类,具备以下特性:日志文件命名采用文件名前缀加上日期的格式,方便管理与识别。对单个日志文件大小进行限制,当文件大小达到20MB时,自动开启新的日志文件。具备过期文件清理机制,自动删除保留时间超过365天的日志文件,节省存储空间。该日志类是线程安全的,能够在多线程环境下稳定运行,避免日志记录冲突。支持使用format格式进行日志记录,方便灵活输出不同格式的日志信息。自动创建子目
- 大模型RAG实战|混合检索:BM25检索+向量检索的LlamaIndex实现
AIGC大模型 吱屋猪
djangopython后端AI-native人工智能llama百度
ThinkRAG大模型RAG实战系列文章,带你深入探索使用LlamaIndex框架,构建本地大模型知识库问答系统。本系列涵盖知识库管理、检索优化、模型本地部署等主题,通过代码与实例,讲解如何打造生产级系统,实现本地知识库的快速检索与智能问答。本文我将介绍一种效果更好的混合检索方法,在实际问答场景中,优于向量数据库自带的混合检索功能。1什么是混合检索目前,大模型RAG系统中普遍采用混合检索来提升检索
- versal架构简介:Sec I Introduction
妮蔻mega
versal架构简介fpga
1.SoCHardwareOverviewAMD的SoC(系统级芯片)具有广泛的功能,适用于需要可扩展处理能力、集成功能单元和可扩展可编程逻辑的高端应用,并且可以在正常系统操作期间动态配置和重新配置。SoC架构包括一组丰富的集成硬件组件和许多用户可编程设计选项,适用于许多系统级解决方案。每个设备都包含一个处理系统、可编程逻辑、平台管理控制器以及各种集成的硬件子系统和外设。处理系统和可编程逻辑可以选
- 基于多向量检索器的多模态RAG实现:用于表格、文本和图像
lichunericli
人工智能自然语言处理
原文地址:Multi-VectorRetrieverforRAGontables,text,andimages2023年10月20日概括跨不同数据类型(图像、文本、表格)的无缝问答是RAG追求的目标之一。我们将发布threenewcookbooks,展示在包含混合内容类型的文档上使用RAG的多向量检索器。这些cookbooks还提出了一些将多模态LLM与多向量检索器配对以解锁图像上的RAG的想法。
- redis有哪几种持久化方式
杏花春雨江南
redisredis数据库缓存
Redis提供了两种持久化方式:RDB(RedisDatabase)和AOF(Append-OnlyFile)。它们各有优缺点,适用于不同的场景。以下是它们的原理、优缺点以及如何选择的建议:1.RDB(RedisDatabase)原理:RDB是Redis的快照持久化方式。Redis会定期将内存中的数据生成一个二进制快照文件(.rdb),并保存到磁盘。可以通过配置save参数设置触发快照的条件(如s
- Hystrix 实现限流\降级\熔断
杏花春雨江南
java开发那些事儿hystrixjava开发语言
Hystrix是一个强大的库,用于处理分布式系统中的延迟和容错问题。它提供了限流、降级和熔断等功能。下面是一个完整的Java示例,展示如何使用Hystrix实现限流、降级和熔断。1.添加依赖在pom.xml中添加Hystrix的依赖:xml复制com.netflix.hystrixhystrix-core1.5.18运行HTML2.创建Hystrix命令创建一个继承自HystrixCommand的
- 【.NET 6】RabbitMQ延迟消息指南
人生短几个秋
.netcorerabbitmq.net
背景最近遇到一个比较特殊需求,需要修改一个的RabbitMQ消费者,以实现在消费某种特定的类型消息时,延迟1小时再处理,几个需要注意的点:延迟是以小时为单位不是所有消息都延迟消费,只延迟特定类型的消息只在第一次消费时延迟1小时,容错机制产生的重新消费(也即消息消费失败,多次进入延迟队列重试),则不再延迟1小时消费者消费过程中可能会重启考虑到这几点,我们需要一个标识以及持久化,不能简单使用Threa
- AI时代如何引流
alankuo
人工智能
AI时代引流可以从以下几个方面着手:利用AI精准定位与个性化营销精准客户画像:借助AI整合多维度数据,涵盖客户的年龄、性别、地理位置、消费习惯、浏览历史等,深度挖掘后绘制精准的客户画像,明确潜在客户特征与需求,让营销活动更具针对性。个性化内容创作:运用AI的自然语言处理功能,依据客户特点和需求生成个性化的营销内容,如广告文案、产品推荐等。以电商平台为例,可针对不同用户生成符合其喜好的商品推荐文案。
- element-ui简介、安装和使用代码
alankuo
前端前端
一、Element-UI简介Element-UI是一套基于Vue.js的桌面端组件库,由饿了么前端团队开源。它提供了丰富的组件,如按钮、表单、表格、菜单、对话框等,这些组件具有统一的视觉风格和交互设计,能够帮助开发者快速构建美观、易用的Web应用程序。Element-UI的特点包括:丰富的组件库涵盖了Web应用开发中常见的各种组件需求,无论是简单的UI元素还是复杂的交互组件都能找到,大大减少了开发
- 学习Web3.0需要具备哪些基础知识?
alankuo
人工智能人工智能
学习Web3.0需要具备以下基础知识:一、计算机科学基础1.编程知识-了解至少一种编程语言,如Python、JavaScript等。这将有助于理解Web3.0应用程序的开发和智能合约的编写。-熟悉编程概念,如变量、数据类型、控制结构、函数等。2.数据结构和算法-掌握常见的数据结构,如数组、链表、栈、队列、树、图等,以及它们的操作和应用。-了解基本的算法,如排序、搜索、递归等,以及它们的时间和空间复
- 【versal】【petalinux】添加LED驱动
qq2108462953
petalinuxlinux运维服务器
versal添加LED驱动`提示:本文使用外部kernel与uboot`一、LED1.1LED功能1.2LED节点1.3LED操作命令1.3.1点LED1.3.2关闭LED二、LED驱动2.1驱动文件2.2设备树兼容属性三、LED设备树配置3.1设备树配置信息3.2设备树配置信息讲解四、提示4.1正确4.2错误4.3提示:本文使用外部kernel与uboot一、LED1.1LED功能向节点中bri
- LLM-PowerHouse: 一站式大型语言模型定制训练与推理指南
Nifc666
语言模型人工智能自然语言处理whisperlangchaingpt开源软件
LLM-PowerHouse:解锁大型语言模型的潜力在人工智能和自然语言处理领域,大型语言模型(LargeLanguageModels,LLMs)正在掀起一场革命。随着GPT、BERT等模型的出现,LLMs展现出了惊人的能力,可以执行各种复杂的语言任务。然而,如何有效地训练和使用这些强大的模型仍然是一个挑战。针对这一需求,GitHub上的LLM-PowerHouse项目应运而生,为开发者、研究人员
- 深入理解C++编程:从内存管理到多态与算法实现
嵌入式Jerry
C++c++算法开发语言
C++是一门功能强大的编程语言,广泛应用于系统编程、游戏开发和高性能计算等领域。本文将通过一系列经典问题,深入探讨C++的核心知识点,包括内存管理、多态(结合函数重载与覆盖)、多线程、TCP/IP模型、软链接与硬链接的区别,以及常见算法实现。每个知识点都配有详细的代码示例和解释,帮助你更好地理解和掌握。1.内存管理:内存泄露与检测什么是内存泄露?内存泄露是指程序在动态分配内存后,未能正确释放已不再
- 深入解析音频编解码器(Audio CODEC):硬件、接口与驱动开发
嵌入式Jerry
内核音视频驱动开发linux嵌入式硬件
音频编解码器(AudioCODEC)是音频处理系统中的核心组件,负责模拟信号与数字信号的相互转换,广泛应用于智能音箱、嵌入式系统、消费电子产品等设备。本篇文章将从硬件结构、接口解析、驱动开发和软件配置等方面,深入讲解如何正确理解和使用音频编解码器。1.音频编解码器的基本概念CODEC(Coder-Decoder),即编解码器,是一种模数转换(ADC)和数模转换(DAC)的组合设备,用于处理音频信号
- PyTorch中,将`DataLoader`加载的数据高效传输到GPU
大霸王龙
pytorch人工智能python
一、数据加载到GPU的核心步骤数据预处理与张量转换若原始数据为NumPy数组或Python列表,需先转换为PyTorch张量:X_tensor=torch.from_numpy(X).float()#转换为浮点张量y_tensor=torch.from_numpy(y).long()#分类任务常用长整型显式指定设备:通过.to(device)将数据移至GPU(需提前定义device对象):devi
- 【sklearn 01】人工智能概述
@金色海岸
人工智能sklearnpython
一、人工智能,机器学习,深度学习人工智能指由人类制造出的具有智能的机器。这是一个非常大的范围,长远目标是让机器实现人工智能,但目前我们仍处在非常初始的阶段,甚至不能称为智能机器学习是指通过数据训练出能完成一定功能的模型,是实现人工智能的手段之一,也是目前最主流的人工智能实现方法深度学习则是机器学习的分支,超过8层的神经网络模型就叫深度学习,深度即层数。深度学习目前在语音、图像等领域取得很好的效果
- 【sklearn 05】sklearn功能模块
@金色海岸
sklearn人工智能python
sklearn功能模块分类:识别某个对象属于那个类别回归:预测与对象相关联的连续值属性聚类:将相似对象自动分组降维:减少要考虑的随机变量的数量模型选择:比较、验证、选择参数和模型预处理:特征提取和归一化
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc