def binary_search(lst, target):
low = 0
high = len(lst) - 1
while low <= high:
mid = (low + high) // 2
guess = lst[mid]
if guess < target:
low += 1
elif guess > target:
high -= 1
else:
return mid
return None
lst = [1, 2, 3, 4, 5, 6]
target = 6
binary_search(lst, target)
输出结果为:
5
# 获取最小的数字的索引
def get_small_idx(lst):
small_num = lst[0]
small_idx = 0
for i in range(1, len(lst)):
if lst[i] < small_num:
small_num = lst[i]
small_idx = i
return small_idx
# 选择排序
def selection_sort(lst):
new_lst = []
for i in range(len(lst)):
small_idx = get_small_idx(lst)
new_lst.append(lst.pop(small_idx))
return new_lst
lst = [5, 3, 8, 4, 1, 0, 2]
selection_sort(lst)
输出结果为:
[0, 1, 2, 3, 4, 5, 8]
def counts(i):
print(i)
if i <= 1:
return
else:
counts(i - 1)
counts(5)
输出结果为:
5
4
3
2
1
def greet2(name):
print("How are you? " + name + " !")
def bye():
print("OK, bye!")
def greet(name):
print("Hello, " + name + " !")
greet2('Mike')
bye()
print('Bye!')
greet('Tom')
输出结果为:
Hello, Tom !
How are you? Mike !
OK, bye!
Bye!
def fact(x):
if x == 1:
return 1
else:
return x * fact(x - 1)
fact(5)
输出结果为:
120
# 编写求和的函数
def get_sum(lst):
if lst == []:
return 0
else:
return lst[0] + get_sum(lst[1:])
get_sum([1, 2, 3, 4, 5])
输出结果为:
15
def get_quick_sort(lst):
if len(lst) < 2:
return lst # 基线条件
else:
base_num = lst[0]
less = [i for i in lst[1:] if i < base_num]
more = [i for i in lst[1:] if i > base_num]
return get_quick_sort(less) + [base_num] + get_quick_sort(more)
lst = [5, 3, 8, 4, 1, 0, 2]
get_quick_sort(lst)
输出结果为:
[0, 1, 2, 3, 4, 5, 8]
phone_book = dict()
phone_book['Mike'] = 123456
phone_book['Tom'] = 23456
phone_book
输出:
{'Mike': 123456, 'Tom': 23456}
voted = {}
def check_vote(name):
if voted.get(name):
print("Kick him out!")
else:
voted[name] = True
print('Let he vote!')
check_vote('Tom')
输出:
Let he vote!
check_vote('Tom')
输出:
Kick him out!
from collections import deque
def bfs(graph, start, target):
queue = deque() # 创建一个空队列
visited = set() # 记录已访问过的节点
queue.append((start, [start])) # 初始节点入队
while queue:
node, path = queue.popleft() # 出队一个节点
visited.add(node) # 将节点标记为已访问
if node == target:
return path # 找到目标节点,返回路径
neighbors = graph[node] # 获取当前节点的邻居节点
for neighbor in neighbors:
if neighbor not in visited:
queue.append((neighbor, path + [neighbor])) # 邻居节点入队,将路径更新
return None # 没有找到路径
# 测试代码
graph = {
'A': ['B', 'C'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F'],
'D': ['B'],
'E': ['B', 'F'],
'F': ['C', 'E']
}
start_node = 'A'
target_node = 'F'
shortest_path = bfs(graph, start_node, target_node)
if shortest_path:
print(f"Shortest path from {start_node} to {target_node}: {' -> '.join(shortest_path)}")
else:
print(f"There is no path from {start_node} to {target_node}.")
输出结果为:
Shortest path from A to F: A -> C -> F
from collections import deque
queue = deque() # 创建一个空队列
# 入队
queue.append(1)
queue.append(2)
queue.append(3)
# 出队
while queue:
item = queue.popleft()
print("Dequeued:", item)
输出结果为:
Dequeued: 1
Dequeued: 2
Dequeued: 3
def dfs(graph, node, visited):
visited.add(node) # 将节点标记为已访问
print("Visited node:", node)
neighbors = graph[node] # 获取当前节点的邻居节点
for neighbor in neighbors:
if neighbor not in visited:
dfs(graph, neighbor, visited) # 递归调用DFS
# 测试代码
graph = {
'A': ['B', 'C'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F'],
'D': ['B'],
'E': ['B', 'F'],
'F': ['C', 'E']
}
visited = set() # 记录已访问过的节点
dfs(graph, 'A', visited)
输出结果为:
Visited node: A
Visited node: B
Visited node: D
Visited node: E
Visited node: F
Visited node: C
import sys
def dijkstra(graph, source):
# 初始化距离字典
dist = {node: sys.maxsize for node in graph}
dist[source] = 0
# 初始化访问过的节点集合
visited = set()
while len(visited) < len(graph):
# 选择距离最短的节点
min_dist = sys.maxsize
min_node = None
for node in graph:
if node not in visited and dist[node] < min_dist:
min_dist = dist[node]
min_node = node
# 将选择的节点标记为已访问
visited.add(min_node)
# 更新与选择节点相邻节点的最短距离
for neighbor, weight in graph[min_node].items():
new_dist = dist[min_node] + weight
if new_dist < dist[neighbor]:
dist[neighbor] = new_dist
return dist
# 定义图的邻接表表示
graph = {
1: {2: 5, 4: 4},
2: {3: 3},
3: {},
4: {2: 2, 5: 1},
5: {3: 6, 6: 4},
6: {}
}
source_node = 1
distances = dijkstra(graph, source_node)
# 打印最短路径
for node, distance in distances.items():
if distance == sys.maxsize:
distance = "无穷大"
print(f"节点 {source_node} 到节点 {node} 的最短距离为:{distance}")
输出结果为:
节点 1 到节点 1 的最短距离为:0
节点 1 到节点 2 的最短距离为:5
节点 1 到节点 3 的最短距离为:8
节点 1 到节点 4 的最短距离为:4
节点 1 到节点 5 的最短距离为:5
节点 1 到节点 6 的最短距离为:9
state_needed = set(['mt', 'wa', 'or', 'id', 'nv', 'ut', 'ca', 'az'])
stations = {}
stations['kone'] = set(['id', 'nv', 'ut'])
stations['ktwo'] = set(['wa', 'id', 'mt'])
stations['kthree'] = set(['or', 'nv', 'ca'])
stations['kfour'] = set(['nv', 'ut'])
stations['kfive'] = set(['ca', 'az'])
final_stations = set()
while state_needed:
best_station = None
station_covered = set()
for station, states_for_station in stations.items():
covered = state_needed & states_for_station
if len(covered) > len(station_covered):
best_station = station
station_covered = covered
state_needed -= station_covered
final_stations.add(best_station)
final_stations
输出结果为:
{'kfive', 'kone', 'kthree', 'ktwo'}
def knapsack_dynamic_programming(weights, values, capacity):
n = len(weights)
dp = [[0] * (capacity + 1) for _ in range(n + 1)]
for i in range(1, n + 1):
for j in range(1, capacity + 1):
if weights[i - 1] <= j:
dp[i][j] = max(values[i - 1] + dp[i - 1][j - weights[i - 1]], dp[i - 1][j])
else:
dp[i][j] = dp[i - 1][j]
# 构造最优解
selected_items = []
i, j = n, capacity
while i > 0 and j > 0:
if dp[i][j] != dp[i - 1][j]:
selected_items.append(i - 1)
j -= weights[i - 1]
i -= 1
return dp[n][capacity], selected_items
# 示例用法
weights = [4, 3, 1]
values = [3000, 2000, 1500]
capacity = 4
max_value, selected_items = knapsack_dynamic_programming(weights, values, capacity)
print("Max Value:", max_value)
print("Selected Items:", selected_items)
输出结果为:
Max Value: 3500
Selected Items: [2, 1]
一个语法的展示:
n = 3
capacity = 4
dp = [[0] * (capacity + 1) for _ in range(n + 1)]
dp
[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]
最长公共子串:
def longest_common_substring(str1, str2):
m = len(str1)
n = len(str2)
dp = [[0] * (n + 1) for _ in range(m + 1)]
max_length = 0
end_index = 0
for i in range(1, m + 1):
for j in range(1, n + 1):
if str1[i - 1] == str2[j - 1]:
dp[i][j] = dp[i - 1][j - 1] + 1
if dp[i][j] > max_length:
max_length = dp[i][j]
end_index = i
longest_substring = str1[end_index - max_length:end_index]
return longest_substring
# 示例用法
str1 = "abcdefg"
str2 = "xyzabcd"
result = longest_common_substring(str1, str2)
print("Longest Common Substring:", result)
Longest Common Substring: abcd
最长公共子序列:
def longest_common_subsequence(str1, str2):
m = len(str1)
n = len(str2)
dp = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
for j in range(1, n + 1):
if str1[i - 1] == str2[j - 1]:
dp[i][j] = dp[i - 1][j - 1] + 1
else:
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
# 构造最长公共子序列
i, j = m, n
longest_subsequence = ""
while i > 0 and j > 0:
if str1[i - 1] == str2[j - 1]:
longest_subsequence = str1[i - 1] + longest_subsequence
i -= 1
j -= 1
elif dp[i - 1][j] >= dp[i][j - 1]:
i -= 1
else:
j -= 1
return longest_subsequence
# 示例用法
str1 = "ABCD"
str2 = "ACDF"
result = longest_common_subsequence(str1, str2)
print("Longest Common Subsequence:", result)
输出结果为:
Longest Common Subsequence: ACD