Hadoop hadoop yarn 指令相关参数详解

 

原文地址 : 

Hadoop之YARN命令

http://www.aboutyun.com/thread-14930-1-1.html


问题导读

1.对于Hadoop集群用户有哪些有用的命令?
2.打印需要得到Hadoop的jar和所需要的lib包路径使用的什么命令?
3.对hadoop集群的管理员有哪些很有用的命令?



 

 

概述


YARN命令是调用bin/yarn脚本文件,如果运行yarn脚本没有带任何参数,则会打印yarn所有命令的描述。

使用: yarn [--config confdir] COMMAND [--loglevel loglevel] [GENERIC_OPTIONS] [COMMAND_OPTIONS]
YARN有一个参数解析框架,采用解析泛型参数以及运行类。

 

命令参数 描述
--config confdir 指定一个默认的配置文件目录,默认值是: ${HADOOP_PREFIX}/conf.
--loglevel loglevel 重载Log级别。有效的日志级别包含:FATAL, ERROR, WARN, INFO, DEBUG, and TRACE。默认是INFO。
GENERIC_OPTIONS YARN支持表A的通用命令项。
COMMAND COMMAND_OPTIONS YARN分为用户命令和管理员命令。


表A:
 

通用项 Description
-archives 用逗号分隔计算中未归档的文件。 仅仅针对JOB。
-conf 制定应用程序的配置文件。
-D = 使用给定的属性值。
-files 用逗号分隔的文件,拷贝到Map reduce机器,仅仅针对JOB
-jt or 指定一个ResourceManager. 仅仅针对JOB。
-libjars 将用逗号分隔的jar路径包含到classpath中去,仅仅针对JOB。



用户命令:
对于Hadoop集群用户很有用的命令:

application
使用: yarn application [options]

命令选项 描述
-appStates 使用-list命令,基于应用程序的状态来过滤应用程序。如果应用程序的状态有多个,用逗号分隔。 有效的应用程序状态包含
如下: ALL, NEW, NEW_SAVING, SUBMITTED, ACCEPTED, RUNNING, FINISHED, FAILED, KILLED
-appTypes 使用-list命令,基于应用程序类型来过滤应用程序。如果应用程序的类型有多个,用逗号分隔。
-list 从RM返回的应用程序列表,使用-appTypes参数,支持基于应用程序类型的过滤,使用-appStates参数,支持对应用程序状态的过滤。
-kill kill掉指定的应用程序。
-status 打印应用程序的状态。

示例1:
 

[hduser@hadoop0 bin]$ ./yarn application -list -appStates ACCEPTED
15/08/10 11:48:43 INFO client.RMProxy: Connecting to ResourceManager at hadoop1/10.0.1.41:8032
Total number of applications (application-types: [] and states: [ACCEPTED]):1
Application-Id                  Application-Name Application-Type User   Queue   State    Final-State Progress Tracking-URL
application_1438998625140_1703  MAC_STATUS   MAPREDUCE    hduser default ACCEPTED UNDEFINED   0%       N/A

 


示例2:
 

[hduser@hadoop0 bin]$ ./yarn application -list
15/08/10 11:43:01 INFO client.RMProxy: Connecting to ResourceManager at hadoop1/10.0.1.41:8032
Total number of applications (application-types: [] and states: [SUBMITTED, ACCEPTED, RUNNING]):1
Application-Id                 Application-Name Application-Type  User   Queue   State    Final-State   Progress Tracking-URL
application_1438998625140_1701 MAC_STATUS   MAPREDUCE     hduser default ACCEPTED UNDEFINED 0%   N/A

 


示例3:
 

[hduser@hadoop0 bin]$ ./yarn application -kill application_1438998625140_1705
15/08/10 11:57:41 INFO client.RMProxy: Connecting to ResourceManager at hadoop1/10.0.1.41:8032
Killing application application_1438998625140_1705
15/08/10 11:57:42 INFO impl.YarnClientImpl: Killed application application_1438998625140_1705





applicationattempt
使用: yarn applicationattempt [options]
 

命令选项 描述
-help 帮助
-list 获取到应用程序尝试的列表,其返回值ApplicationAttempt-Id 等于
-status 打印应用程序尝试的状态。

打印应用程序尝试的报告。
示例1:
 

[hadoop@hadoopcluster78 bin]$ yarn applicationattempt -list application_1437364567082_0106
15/08/10 20:58:28 INFO client.RMProxy: Connecting to ResourceManager at hadoopcluster79/10.0.1.79:8032
Total number of application attempts :1
ApplicationAttempt-Id                  State    AM-Container-Id                        Tracking-URL
appattempt_1437364567082_0106_000001   RUNNING  container_1437364567082_0106_01_000001 http://hadoopcluster79:8088/proxy/application_1437364567082_0106/

 


示例2:

[cloudera-scm@app7 ~]$ yarn applicationattempt -status appattempt_1540201000392_0038_000001
18/10/24 17:45:30 INFO client.RMProxy: Connecting to ResourceManager at dmp-b4/10.170.0.23:8032
Application Attempt Report : 
	ApplicationAttempt-Id : appattempt_1540201000392_0038_000001
	State : RUNNING
	AMContainer : container_1540201000392_0038_01_000001
	Tracking-URL : http://dmp-b4:8088/proxy/application_1540201000392_0038/
	RPC Port : 0
	AM Host : 10.170.0.28
	Diagnostics : 

 



classpath

使用: yarn classpath
 

打印需要得到Hadoop的jar和所需要的lib包路径
 

[cloudera-scm@app7 ~]$ yarn classpath
/etc/hadoop/conf:/etc/hadoop/conf:/etc/hadoop/conf:/opt/cloudera/parcels/CDH-5.14.0-1.cdh5.14.0.p0.24/lib/hadoop/libexec/../../hadoop/lib/*:/opt/cloudera/parcels/CDH-5.14.0-1.cdh5.14.0.p0.24/lib/hadoop/libexec/../../hadoop/.//*:/opt/cloudera/parcels/CDH-5.14.0-1.cdh5.14.0.p0.24/lib/hadoop/libexec/../../hadoop-hdfs/./:/opt/cloudera/parcels/CDH-5.14.0-1.cdh5.14.0.p0.24/lib/hadoop/libexec/../../hadoop-hdfs/lib/*:/opt/cloudera/parcels/CDH-5.14.0-1.cdh5.14.0.p0.24/lib/hadoop/libexec/../../hadoop-hdfs/.//*:/opt/cloudera/parcels/CDH-5.14.0-1.cdh5.14.0.p0.24/lib/hadoop/libexec/../../hadoop-yarn/lib/*:/opt/cloudera/parcels/CDH-5.14.0-1.cdh5.14.0.p0.24/lib/hadoop/libexec/../../hadoop-yarn/.//*:/opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/lib/*:/opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/.//*:/opt/cloudera/parcels/CDH-5.14.0-1.cdh5.14.0.p0.24/lib/hadoop/libexec/../../hadoop-yarn/.//*:/opt/cloudera/parcels/CDH-5.14.0-1.cdh5.14.0.p0.24/lib/hadoop/libexec/../../hadoop-yarn/lib/*




container
使用: yarn container [options]
 

命令选项

描述

-help

帮助

-list

应用程序尝试的Containers列表

-status

打印Container的状态

打印container(s)的报告
示例1:

 

[hadoop@hadoopcluster78 bin]$ yarn container -list appattempt_1437364567082_0106_01
15/08/10 20:45:45 INFO client.RMProxy: Connecting to ResourceManager at hadoopcluster79/10.0.1.79:8032
Total number of containers :25
                  Container-Id            Start Time             Finish Time                   State                    Host                                LOG-URL
container_1437364567082_0106_01_000028         1439210458659                       0                 RUNNING    hadoopcluster83:37140   //hadoopcluster83:8042/node/containerlogs/container_1437364567082_0106_01_000028/hadoop
container_1437364567082_0106_01_000016         1439210314436                       0                 RUNNING    hadoopcluster84:43818   //hadoopcluster84:8042/node/containerlogs/container_1437364567082_0106_01_000016/hadoop
container_1437364567082_0106_01_000019         1439210338598                       0                 RUNNING    hadoopcluster83:37140   //hadoopcluster83:8042/node/containerlogs/container_1437364567082_0106_01_000019/hadoop
container_1437364567082_0106_01_000004         1439210314130                       0                 RUNNING    hadoopcluster82:48622   //hadoopcluster82:8042/node/containerlogs/container_1437364567082_0106_01_000004/hadoop
container_1437364567082_0106_01_000008         1439210314130                       0                 RUNNING    hadoopcluster82:48622   //hadoopcluster82:8042/node/containerlogs/container_1437364567082_0106_01_000008/hadoop
container_1437364567082_0106_01_000031         1439210718604                       0                 RUNNING    hadoopcluster83:37140   //hadoopcluster83:8042/node/containerlogs/container_1437364567082_0106_01_000031/hadoop
container_1437364567082_0106_01_000020         1439210339601                       0                 RUNNING    hadoopcluster83:37140   //hadoopcluster83:8042/node/containerlogs/container_1437364567082_0106_01_000020/hadoop
container_1437364567082_0106_01_000005         1439210314130                       0                 RUNNING    hadoopcluster82:48622   //hadoopcluster82:8042/node/containerlogs/container_1437364567082_0106_01_000005/hadoop
container_1437364567082_0106_01_000013         1439210314435                       0                 RUNNING    hadoopcluster84:43818   //hadoopcluster84:8042/node/containerlogs/container_1437364567082_0106_01_000013/hadoop
container_1437364567082_0106_01_000022         1439210368679                       0                 RUNNING    hadoopcluster84:43818   //hadoopcluster84:8042/node/containerlogs/container_1437364567082_0106_01_000022/hadoop
container_1437364567082_0106_01_000021         1439210353626                       0                 RUNNING    hadoopcluster83:37140   //hadoopcluster83:8042/node/containerlogs/container_1437364567082_0106_01_000021/hadoop
container_1437364567082_0106_01_000014         1439210314435                       0                 RUNNING    hadoopcluster84:43818   //hadoopcluster84:8042/node/containerlogs/container_1437364567082_0106_01_000014/hadoop
container_1437364567082_0106_01_000029         1439210473726                       0                 RUNNING    hadoopcluster80:42366   //hadoopcluster80:8042/node/containerlogs/container_1437364567082_0106_01_000029/hadoop
container_1437364567082_0106_01_000006         1439210314130                       0                 RUNNING    hadoopcluster82:48622   //hadoopcluster82:8042/node/containerlogs/container_1437364567082_0106_01_000006/hadoop
container_1437364567082_0106_01_000003         1439210314129                       0                 RUNNING    hadoopcluster82:48622   //hadoopcluster82:8042/node/containerlogs/container_1437364567082_0106_01_000003/hadoop
container_1437364567082_0106_01_000015         1439210314436                       0                 RUNNING    hadoopcluster84:43818   //hadoopcluster84:8042/node/containerlogs/container_1437364567082_0106_01_000015/hadoop
container_1437364567082_0106_01_000009         1439210314130                       0                 RUNNING    hadoopcluster82:48622   //hadoopcluster82:8042/node/containerlogs/container_1437364567082_0106_01_000009/hadoop
container_1437364567082_0106_01_000030         1439210708467                       0                 RUNNING    hadoopcluster83:37140   //hadoopcluster83:8042/node/containerlogs/container_1437364567082_0106_01_000030/hadoop
container_1437364567082_0106_01_000012         1439210314435                       0                 RUNNING    hadoopcluster84:43818   //hadoopcluster84:8042/node/containerlogs/container_1437364567082_0106_01_000012/hadoop
container_1437364567082_0106_01_000027         1439210444354                       0                 RUNNING    hadoopcluster84:43818   //hadoopcluster84:8042/node/containerlogs/container_1437364567082_0106_01_000027/hadoop
container_1437364567082_0106_01_000026         1439210428514                       0                 RUNNING    hadoopcluster83:37140   //hadoopcluster83:8042/node/containerlogs/container_1437364567082_0106_01_000026/hadoop
container_1437364567082_0106_01_000017         1439210314436                       0                 RUNNING    hadoopcluster84:43818   //hadoopcluster84:8042/node/containerlogs/container_1437364567082_0106_01_000017/hadoop
container_1437364567082_0106_01_000001         1439210306902                       0                 RUNNING    hadoopcluster80:42366   //hadoopcluster80:8042/node/containerlogs/container_1437364567082_0106_01_000001/hadoop
container_1437364567082_0106_01_000002         1439210314129                       0                 RUNNING    hadoopcluster82:48622   //hadoopcluster82:8042/node/containerlogs/container_1437364567082_0106_01_000002/hadoop
container_1437364567082_0106_01_000025         1439210414171                       0                 RUNNING    hadoopcluster83:37140   //hadoopcluster83:8042/node/containerlogs/container_1437364567082_0106_01_000025/hadoop



示例2:

 

[hadoop@hadoopcluster78 bin]$ yarn container -status container_1437364567082_0105_01_000020
15/08/10 20:28:00 INFO client.RMProxy: Connecting to ResourceManager at hadoopcluster79/10.0.1.79:8032
Container Report :
    Container-Id : container_1437364567082_0105_01_000020
    Start-Time : 1439208779842
    Finish-Time : 0
    State : RUNNING
    LOG-URL : //hadoopcluster83:8042/node/containerlogs/container_1437364567082_0105_01_000020/hadoop
    Host : hadoopcluster83:37140
    Diagnostics : null

 




jar使用: yarn jar [mainClass] args...
运行jar文件,用户可以将写好的YARN代码打包成jar文件,用这个命令去运行它。


logs
使用: yarn logs -applicationId [options]
注:应用程序没有完成,该命令是不能打印日志的。

 

命令选项

描述

-applicationId

指定应用程序ID,应用程序的ID可以在yarn.resourcemanager.webapp.address配置的路径查看(即:ID)

-appOwner

应用的所有者(如果没有指定就是当前用户)应用程序的ID可以在yarn.resourcemanager.webapp.address配置的路径查看(即:User)

-containerId

Container Id

-help

帮助

-nodeAddress

节点地址的格式:nodename:port (端口是配置文件中:yarn.nodemanager.webapp.address参数指定)

转存container的日志。
示例:

[hadoop@hadoopcluster78 bin]$ yarn logs -applicationId application_1437364567082_0104  -appOwner hadoop
15/08/10 17:59:19 INFO client.RMProxy: Connecting to ResourceManager at hadoopcluster79/10.0.1.79:8032
Container: container_1437364567082_0104_01_000003 on hadoopcluster82_48622
============================================================================
LogType: stderr
LogLength: 0
Log Contents:
LogType: stdout
LogLength: 0
Log Contents:
LogType: syslog
LogLength: 3673
Log Contents:
2015-08-10 17:24:01,565 WARN [main] org.apache.hadoop.conf.Configuration: job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.retry.interval;  Ignoring.
2015-08-10 17:24:01,580 WARN [main] org.apache.hadoop.conf.Configuration: job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.attempts;  Ignoring.
。。。。。。此处省略N万个字符
// 下面的命令,根据APP的所有者查看LOG日志,因为application_1437364567082_0104任务我是用hadoop用户启动的,所以打印的是如下信息:
[hadoop@hadoopcluster78 bin]$ yarn logs -applicationId application_1437364567082_0104  -appOwner root
15/08/10 17:59:25 INFO client.RMProxy: Connecting to ResourceManager at hadoopcluster79/10.0.1.79:8032
Logs not available at /tmp/logs/root/logs/application_1437364567082_0104
Log aggregation has not completed or is not enabled.

 

 


node
使用: yarn node [options]
 

命令选项

描述

-all

所有的节点,不管是什么状态的。

-list

列出所有RUNNING状态的节点。支持-states选项过滤指定的状态,节点的状态包
含:NEW,RUNNING,UNHEALTHY,DECOMMISSIONED,LOST,REBOOTED。支持--all显示所有的节点。

-states

和-list配合使用,用逗号分隔节点状态,只显示这些状态的节点信息。

-status

打印指定节点的状态。

示例1:
 

[hadoop@hadoopcluster78 bin]$ ./yarn node -list -all
15/08/10 17:34:17 INFO client.RMProxy: Connecting to ResourceManager at hadoopcluster79/10.0.1.79:8032
Total Nodes:4
         Node-Id         Node-State Node-Http-Address   Number-of-Running-Containers
hadoopcluster82:48622           RUNNING hadoopcluster82:8042                               0
hadoopcluster84:43818           RUNNING hadoopcluster84:8042                               0
hadoopcluster83:37140           RUNNING hadoopcluster83:8042                               0
hadoopcluster80:42366           RUNNING hadoopcluster80:8042                               0


示例2:
 

[hadoop@hadoopcluster78 bin]$ ./yarn node -list -states RUNNING
15/08/10 17:39:55 INFO client.RMProxy: Connecting to ResourceManager at hadoopcluster79/10.0.1.79:8032
Total Nodes:4
         Node-Id         Node-State Node-Http-Address   Number-of-Running-Containers
hadoopcluster82:48622           RUNNING hadoopcluster82:8042                               0
hadoopcluster84:43818           RUNNING hadoopcluster84:8042                               0
hadoopcluster83:37140           RUNNING hadoopcluster83:8042                               0
hadoopcluster80:42366           RUNNING hadoopcluster80:8042                               0

 


示例3:

[hadoop@hadoopcluster78 bin]$ ./yarn node -status hadoopcluster82:48622
15/08/10 17:52:52 INFO client.RMProxy: Connecting to ResourceManager at hadoopcluster79/10.0.1.79:8032
Node Report :
    Node-Id : hadoopcluster82:48622
    Rack : /default-rack
    Node-State : RUNNING
    Node-Http-Address : hadoopcluster82:8042
    Last-Health-Update : 星期一 10/八月/15 05:52:09:601CST
    Health-Report :
    Containers : 0
    Memory-Used : 0MB
    Memory-Capacity : 10240MB
    CPU-Used : 0 vcores
    CPU-Capacity : 8 vcores

 

 


打印节点的报告。


queue
使用: yarn queue [options]
 

命令选项

描述

-help

帮助

-status

打印队列的状态

打印队列信息。


version
使用: yarn version
打印hadoop的版本。


管理员命令:
下列这些命令对hadoop集群的管理员是非常有用的。

daemonlog使用:
   yarn daemonlog -getlevel     yarn daemonlog -setlevel

 

参数选项

描述

-getlevel

打印运行在的守护进程的日志级别。这个命令内部会连接http:///logLevel?log=

-setlevel

设置运行在的守护进程的日志级别。这个命令内部会连接http:///logLevel?log=

针对指定的守护进程,获取/设置日志级别.
 

示例1:

 

[root@hadoopcluster78 ~]# hadoop daemonlog -getlevel hadoopcluster82:50075 org.apache.hadoop.hdfs.server.datanode.DataNode
Connecting to http://hadoopcluster82:50075/logLevel?log=org.apache.hadoop.hdfs.server.datanode.DataNode
Submitted Log Name: org.apache.hadoop.hdfs.server.datanode.DataNode
Log Class: org.apache.commons.logging.impl.Log4JLogger
Effective level: INFO
[root@hadoopcluster78 ~]# yarn daemonlog -getlevel hadoopcluster79:8088 org.apache.hadoop.yarn.server.resourcemanager.rmapp.RMAppImpl
Connecting to http://hadoopcluster79:8088/logLevel?log=org.apache.hadoop.yarn.server.resourcemanager.rmapp.RMAppImpl
Submitted Log Name: org.apache.hadoop.yarn.server.resourcemanager.rmapp.RMAppImpl
Log Class: org.apache.commons.logging.impl.Log4JLogger
Effective level: INFO
[root@hadoopcluster78 ~]# yarn daemonlog -getlevel hadoopcluster78:19888 org.apache.hadoop.mapreduce.v2.hs.JobHistory
Connecting to http://hadoopcluster78:19888/logLevel?log=org.apache.hadoop.mapreduce.v2.hs.JobHistory
Submitted Log Name: org.apache.hadoop.mapreduce.v2.hs.JobHistory
Log Class: org.apache.commons.logging.impl.Log4JLogger
Effective level: INFO

 


nodemanager
使用: yarn nodemanager
启动NodeManager


proxyserver
使用: yarn proxyserver
启动web proxy server


resourcemanager
使用: yarn resourcemanager [-format-state-store]
 

参数选项

描述

-format-state-store

RMStateStore的格式. 如果过去的应用程序不再需要,则清理RMStateStore, RMStateStore仅仅在ResourceManager没有运行的时候,才运行RMStateStore

启动ResourceManager


rmadmin
使用:
  yarn rmadmin [-refreshQueues]               [-refreshNodes]               [-refreshUserToGroupsMapping]                [-refreshSuperUserGroupsConfiguration]               [-refreshAdminAcls]                [-refreshServiceAcl]               [-getGroups [username]]               [-transitionToActive [--forceactive] [--forcemanual] ]               [-transitionToStandby [--forcemanual] ]               [-failover [--forcefence] [--forceactive] ]               [-getServiceState ]               [-checkHealth ]               [-help [cmd]]

 

参数选项

描述

-refreshQueues

重载队列的ACL,状态和调度器特定的属性,ResourceManager将重载mapred-queues配置文件

-refreshNodes

动态刷新dfs.hosts和dfs.hosts.exclude配置,无需重启NameNode。
dfs.hosts:列出了允许连入NameNode的datanode清单(IP或者机器名)
dfs.hosts.exclude:列出了禁止连入NameNode的datanode清单(IP或者机器名)
重新读取hosts和exclude文件,更新允许连到Namenode的或那些需要退出或入编的Datanode的集合。

-refreshUserToGroupsMappings

刷新用户到组的映射。

-refreshSuperUserGroupsConfiguration

刷新用户组的配置

-refreshAdminAcls

刷新ResourceManager的ACL管理

-refreshServiceAcl

ResourceManager重载服务级别的授权文件。

-getGroups [username]

获取指定用户所属的组。

-transitionToActive [–forceactive] [–forcemanual]

尝试将目标服务转为 Active 状态。如果使用了–forceactive选项,不需要核对非Active节点。如果采用了自动故障转移,这个命令不能使用。虽然你可以重写–forcemanual选项,你需要谨慎。

-transitionToStandby [–forcemanual]

将服务转为 Standby 状态. 如果采用了自动故障转移,这个命令不能使用。虽然你可以重写–forcemanual选项,你需要谨慎。

-failover [–forceactive]

启动从serviceId1 到 serviceId2的故障转移。如果使用了-forceactive选项,即使服务没有准备,也会尝试故障转移到目标服务。如果采用了自动故障转移,这个命令不能使用。

-getServiceState

返回服务的状态。(注:ResourceManager不是HA的时候,时不能运行该命令的)

-checkHealth

请求服务器执行健康检查,如果检查失败,RMAdmin将用一个非零标示退出。(注:ResourceManager不是HA的时候,时不能运行该命令的)

-help [cmd]

显示指定命令的帮助,如果没有指定,则显示命令的帮助。



scmadmin使用: yarn scmadmin [options]
 

参数选项

描述

-help

Help

-runCleanerTask

Runs the cleaner task

Runs Shared Cache Manager admin client


sharedcachemanager
使用: yarn sharedcachemanager
启动Shared Cache Manager


timelineserver
之前yarn运行框架只有Job history server,这是hadoop2.4版本之后加的通用Job History Server,命令为Application Timeline Server,详情请看:The YARN Timeline Server

使用: yarn timelineserver
启动TimeLineServer

你可能感兴趣的:(Hadoop)