[图表]pyecharts-K线图

[图表]pyecharts-K线图

先来看代码:

import requests
from typing import List, Union

from pyecharts import options as opts
from pyecharts.charts import Kline, Line, Bar, Grid


def get_data():
    response = requests.get(
        url="https://echarts.apache.org/examples/data/asset/data/stock-DJI.json"
    )
    json_response = response.json()
    # 解析数据
    return split_data(data=json_response)


def split_data(data):
    category_data = []
    values = []
    volumes = []

    for i, tick in enumerate(data):
        category_data.append(tick[0])
        values.append(tick)
        volumes.append([i, tick[4], 1 if tick[1] > tick[2] else -1])
    return {"categoryData": category_data, "values": values, "volumes": volumes}


def calculate_ma(day_count: int, data):
    result: List[Union[float, str]] = []
    for i in range(len(data["values"])):
        if i < day_count:
            result.append("-")
            continue
        sum_total = 0.0
        for j in range(day_count):
            sum_total += float(data["values"][i - j][1])
        result.append(abs(float("%.3f" % (sum_total / day_count))))
    return result


def draw_charts():
    kline_data = [data[1:-1] for data in chart_data["values"]]
    kline = (
        Kline()
        .add_xaxis(xaxis_data=chart_data["categoryData"])
        .add_yaxis(
            series_name="Dow-Jones index",
            y_axis=kline_data,
            itemstyle_opts=opts.ItemStyleOpts(color="#ec0000", color0="#00da3c"),
        )
        .set_global_opts(
            legend_opts=opts.LegendOpts(
                is_show=False, pos_bottom=10, pos_left="center"
            ),
            datazoom_opts=[
                opts.DataZoomOpts(
                    is_show=False,
                    type_="inside",
                    xaxis_index=[0, 1],
                    range_start=98,
                    range_end=100,
                ),
                opts.DataZoomOpts(
                    is_show=True,
                    xaxis_index=[0, 1],
                    type_="slider",
                    pos_top="85%",
                    range_start=98,
                    range_end=100,
                ),
            ],
            yaxis_opts=opts.AxisOpts(
                is_scale=True,
                splitarea_opts=opts.SplitAreaOpts(
                    is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
                ),
            ),
            tooltip_opts=opts.TooltipOpts(
                trigger="axis",
                axis_pointer_type="cross",
                background_color="rgba(245, 245, 245, 0.8)",
                border_width=1,
                border_color="#ccc",
                textstyle_opts=opts.TextStyleOpts(color="#000"),
            ),
            visualmap_opts=opts.VisualMapOpts(
                is_show=False,
                dimension=2,
                series_index=5,
                is_piecewise=True,
                pieces=[
                    {"value": 1, "color": "#00da3c"},
                    {"value": -1, "color": "#ec0000"},
                ],
            ),
            axispointer_opts=opts.AxisPointerOpts(
                is_show=True,
                link=[{"xAxisIndex": "all"}],
                label=opts.LabelOpts(background_color="#777"),
            ),
            brush_opts=opts.BrushOpts(
                x_axis_index="all",
                brush_link="all",
                out_of_brush={"colorAlpha": 0.1},
                brush_type="lineX",
            ),
        )
    )

    line = (
        Line()
        .add_xaxis(xaxis_data=chart_data["categoryData"])
        .add_yaxis(
            series_name="MA5",
            y_axis=calculate_ma(day_count=5, data=chart_data),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
        .add_yaxis(
            series_name="MA10",
            y_axis=calculate_ma(day_count=10, data=chart_data),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
        .add_yaxis(
            series_name="MA20",
            y_axis=calculate_ma(day_count=20, data=chart_data),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
        .add_yaxis(
            series_name="MA30",
            y_axis=calculate_ma(day_count=30, data=chart_data),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
        .set_global_opts(xaxis_opts=opts.AxisOpts(type_="category"))
    )

    bar = (
        Bar()
        .add_xaxis(xaxis_data=chart_data["categoryData"])
        .add_yaxis(
            series_name="Volume",
            y_axis=chart_data["volumes"],
            xaxis_index=1,
            yaxis_index=1,
            label_opts=opts.LabelOpts(is_show=False),
        )
        .set_global_opts(
            xaxis_opts=opts.AxisOpts(
                type_="category",
                is_scale=True,
                grid_index=1,
                boundary_gap=False,
                axisline_opts=opts.AxisLineOpts(is_on_zero=False),
                axistick_opts=opts.AxisTickOpts(is_show=False),
                splitline_opts=opts.SplitLineOpts(is_show=False),
                axislabel_opts=opts.LabelOpts(is_show=False),
                split_number=20,
                min_="dataMin",
                max_="dataMax",
            ),
            yaxis_opts=opts.AxisOpts(
                grid_index=1,
                is_scale=True,
                split_number=2,
                axislabel_opts=opts.LabelOpts(is_show=False),
                axisline_opts=opts.AxisLineOpts(is_show=False),
                axistick_opts=opts.AxisTickOpts(is_show=False),
                splitline_opts=opts.SplitLineOpts(is_show=False),
            ),
            legend_opts=opts.LegendOpts(is_show=False),
        )
    )

    # Kline And Line
    overlap_kline_line = kline.overlap(line)

    # Grid Overlap + Bar
    grid_chart = Grid(
        init_opts=opts.InitOpts(
            width="1000px",
            height="800px",
            animation_opts=opts.AnimationOpts(animation=False),
        )
    )
    grid_chart.add(
        overlap_kline_line,
        grid_opts=opts.GridOpts(pos_left="10%", pos_right="8%", height="50%"),
    )
    grid_chart.add(
        bar,
        grid_opts=opts.GridOpts(
            pos_left="10%", pos_right="8%", pos_top="63%", height="16%"
        ),
    )

    grid_chart.render("professional_kline_brush.html")


if __name__ == "__main__":
    chart_data = get_data()
    draw_charts()

再来看结果:
[图表]pyecharts-K线图_第1张图片
[图表]pyecharts-K线图_第2张图片
[图表]pyecharts-K线图_第3张图片
[图表]pyecharts-K线图_第4张图片

再来看不那么详细的解析:(太多了)

这段代码使用了Python中的一些模块来生成一个包含K线图、折线图和柱状图的可视化图表。以下是对代码的详细解析和代码注释:

import requests
from typing import List, Union

from pyecharts import options as opts
from pyecharts.charts import Kline, Line, Bar, Grid

导入了需要使用的模块,包括requests用于发送HTTP请求,ListUnion用于类型提示,以及KlineLineBarGrid模块用于生成图表。

def get_data():
    response = requests.get(
        url="https://echarts.apache.org/examples/data/asset/data/stock-DJI.json"
    )
    json_response = response.json()
    # 解析数据
    return split_data(data=json_response)

定义了一个函数get_data(),该函数使用requests模块发送HTTP请求获取数据。数据来自"https://echarts.apache.org/examples/data/asset/data/stock-DJI.json"这个URL。然后将获取到的JSON数据解析,并调用split_data()函数对数据进行处理。

def split_data(data):
    category_data = []
    values = []
    volumes = []

    for i, tick in enumerate(data):
        category_data.append(tick[0])
        values.append(tick)
        volumes.append([i, tick[4], 1 if tick[1] > tick[2] else -1])
    return {"categoryData": category_data, "values": values, "volumes": volumes}

定义了一个函数split_data(data),该函数将获取到的JSON数据进行处理和分割。将时间序列、数据和成交量分别存储在category_datavaluesvolumes变量中,然后将它们作为字典的键值返回。

def calculate_ma(day_count: int, data):
    result: List[Union[float, str]] = []
    for i in range(len(data["values"])):
        if i < day_count:
            result.append("-")
            continue
        sum_total = 0.0
        for j in range(day_count):
            sum_total += float(data["values"][i - j][1])
        result.append(abs(float("%.3f" % (sum_total / day_count))))
    return result

定义了一个函数calculate_ma(day_count, data),该函数用于计算移动平均线(Moving Average)。通过遍历数据并根据给定的天数计算移动平均线的值,然后将结果存储在result列表中并返回。

def draw_charts():
    kline_data = [data[1:-1] for data in chart_data["values"]]
    kline = (
        Kline()
        .add_xaxis(xaxis_data=chart_data["categoryData"])
        .add_yaxis(
            series_name="Dow-Jones index",
            y_axis=kline_data,
            itemstyle_opts=opts.ItemStyleOpts(color="#ec0000", color0="#00da3c"),
        )
        .set_global_opts(
            legend_opts=opts.LegendOpts(
                is_show=False, pos_bottom=10, pos_left="center"
            ),
            datazoom_opts=[
                opts

.DataZoomOpts(
                    is_show=False,
                    type_="inside",
                    xaxis_index=[0, 1],
                    range_start=98,
                    range_end=100,
                ),
                opts.DataZoomOpts(
                    is_show=True,
                    xaxis_index=[0, 1],
                    type_="slider",
                    pos_top="85%",
                    range_start=98,
                    range_end=100,
                ),
            ],
            yaxis_opts=opts.AxisOpts(
                is_scale=True,
                splitarea_opts=opts.SplitAreaOpts(
                    is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
                ),
            ),
            tooltip_opts=opts.TooltipOpts(
                trigger="axis",
                axis_pointer_type="cross",
                background_color="rgba(245, 245, 245, 0.8)",
                border_width=1,
                border_color="#ccc",
                textstyle_opts=opts.TextStyleOpts(color="#000"),
            ),
            visualmap_opts=opts.VisualMapOpts(
                is_show=False,
                dimension=2,
                series_index=5,
                is_piecewise=True,
                pieces=[
                    {"value": 1, "color": "#00da3c"},
                    {"value": -1, "color": "#ec0000"},
                ],
            ),
            axispointer_opts=opts.AxisPointerOpts(
                is_show=True,
                link=[{"xAxisIndex": "all"}],
                label=opts.LabelOpts(background_color="#777"),
            ),
            brush_opts=opts.BrushOpts(
                x_axis_index="all",
                brush_link="all",
                out_of_brush={"colorAlpha": 0.1},
                brush_type="lineX",
            ),
        )
    )

    line = (
        Line()
        .add_xaxis(xaxis_data=chart_data["categoryData"])
        .add_yaxis(
            series_name="MA5",
            y_axis=calculate_ma(day_count=5, data=chart_data),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
        .add_yaxis(
            series_name="MA10",
            y_axis=calculate_ma(day_count=10, data=chart_data),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
        .add_yaxis(
            series_name="MA20",
            y_axis=calculate_ma(day_count=20, data=chart_data),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
        .add_yaxis(
            series_name="MA30",
            y_axis=calculate_ma(day_count=30, data=chart_data),
            is_smooth=True,
            is_hover_animation=False,
            linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
        .set_global_opts(xaxis_opts=opts.AxisOpts(type_="category"))
    )

    bar = (
        Bar()
        .add_xaxis(xaxis_data=chart_data["categoryData"])
        .add_yaxis(
            series_name="Volume",
            y_axis=chart_data["volumes"],
            xaxis_index=1,
            yaxis_index=1,
            label_opts=opts.LabelOpts(is_show=False),
        )
        .set_global_opts(
            xaxis_opts=

opts.AxisOpts(
                type_="category",
                is_scale=True,
                grid_index=1,
                boundary_gap=False,
                axisline_opts=opts.AxisLineOpts(is_on_zero=False),
                axistick_opts=opts.AxisTickOpts(is_show=False),
                splitline_opts=opts.SplitLineOpts(is_show=False),
                axislabel_opts=opts.LabelOpts(is_show=False),
                split_number=20,
                min_="dataMin",
                max_="dataMax",
            ),
            yaxis_opts=opts.AxisOpts(
                grid_index=1,
                is_scale=True,
                split_number=2,
                axislabel_opts=opts.LabelOpts(is_show=False),
                axisline_opts=opts.AxisLineOpts(is_show=False),
                axistick_opts=opts.AxisTickOpts(is_show=False),
                splitline_opts=opts.SplitLineOpts(is_show=False),
            ),
            legend_opts=opts.LegendOpts(is_show=False),
        )
    )

创建了一个K线图实例kline,并使用.add_xaxis()方法设置x轴数据,使用.add_yaxis()方法添加K线图的系列数据,其中系列名称为"Dow-Jones index",y轴数据为kline_data,并设置了颜色样式。使用.set_global_opts()方法设置图表的全局配置,包括图例、数据缩放、坐标轴、提示框、可视映射等。

创建了一个折线图实例line,并使用.add_xaxis()方法设置x轴数据,使用.add_yaxis()方法添加折线图的系列数据,其中包括"MA5"、“MA10”、"MA20"和"MA30"这四个系列,y轴数据通过调用calculate_ma()函数计算得到,设置了平滑曲线、不显示标签等样式,并使用.set_global_opts()方法设置x轴的配置。

创建了一个柱状图实例bar,并使用.add_xaxis()方法设置x轴数据,使用.add_yaxis()方法添加柱状图的系列数据,其中系列名称为"Volume",y轴数据为chart_data["volumes"],并设置了一些轴和坐标轴的配置。

    overlap_kline_line = kline.overlap(line)

    grid_chart = Grid(
        init_opts=opts.InitOpts(
            width="1000px",
            height="800px",
            animation_opts=opts.AnimationOpts(animation=False),
        )
    )
    grid_chart.add(
        overlap_kline_line,
        grid_opts=opts.GridOpts(pos_left="10%", pos_right="8%", height="50%"),
    )
    grid_chart.add(
        bar,
        grid_opts=opts.GridOpts(
            pos_left="10%", pos_right="8%", pos_top="63%", height="16%"
        ),
    )

    grid_chart.render("professional_kline_brush.html")

使用.overlap()方法将K线图和折线图进行重叠叠加得到overlap_kline_line。创建了一个网格图表grid_chart,并设置了初始配置,包括宽度、高度和动画效果。使用.add()方法将叠加后的图表overlap_kline_line和柱状图bar添加到网格图表中,并

设置了网格的位置和高度。最后调用.render()方法将图表保存为HTML文件,文件名为"professional_kline_brush.html"。

以上就是这段代码的解析和注释说明。这段代码使用了pyecharts库来生成包含K线图、折线图和柱状图的可视化图表,使用了HTTP请求获取数据,并对数据进行处理和分析,最终生成一个交互式的图表页面。

注:图表资源来源于:
pyecharts-gallery
本站只提供常用图表与其解析

你可能感兴趣的:(python,echarts,python,前端,信息可视化,数据分析)