YOLOv5
Python>=3.6.0
PyTorch>=1.7
conda create -n yolov5 python=3.8
pip install -r requirements.txt
按照这里的代码 数据集转换,就可以将 VOC
格式的数据集转换成 YOLOv5
可以训练的格式
将生成的可训练的数据集复制到和 YOLOv5
工程同一根目录下,即:
其中,YOLOv5
文件夹是工程代码,datasets
文件夹是数据集
数据集的文件目录是:
其中,images
文件夹中存储的图片,labels
文件夹中存储的标签
datasets
├─ images
│ ├─ test # 下面放测试集图片
│ ├─ train # 下面放训练集图片
│ └─ val # 下面放验证集图片
└─ labels
├─ test # 下面放测试集标签
├─ train # 下面放训练集标签
├─ val # 下面放验证集标签
配置数据集文件
在 YOLOv5/data
文件夹中添加一个 new_data.yaml
,文件内容如下:
train: D:/ZADD/code/object detection/datasets/images/train # train images (relative to 'path') 118287 images
val: D:/ZADD/code/object detection/datasets/images/val # val images (relative to 'path') 5000 images
test: D:/ZADD/code/object detection/datasets/images/test # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
# Classes
nc: 6 # number of classes
# class names
names: ["missing_hole", "mouse_bite", "open_circuit", "short", "spur", "spurious_copper"]
配置模型文件
在 YOLOv5/models
文件夹中添加一个 new_train.yaml
,文件内容如下:
其实就是复制已有的 yaml
文件,修改目标类别 即可。
# Parameters
nc: 6 # number of classes # 这里和刚才保持一致
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
运行 train.py
文件,将刚才新建的 yaml
文件添加到文件中,开始训练即可。