- python数据集_保存和使用python绘制多个数据集
weixin_39640085
python数据集
Iraninonemoreproblem-Ihavemultiplefileswiththefollowingformat:FreqAB10001.20.00141001.20.00013101.20.0012allfilesareinthesamefolder;uptonowIamabletoreadallfiles,dothecalculationsIwant,andthensaveonela
- LLMs之Llama-3:基于Colab平台(免费T4-GPU)利用LLaMA-Factory的GUI界面(底层采用unsloth优化框架【加速训练5~30倍+减少50%的内存占用】)对llama-3
一个处女座的程序猿
NLP/LLMs成长书屋大语言模型unslothLLaMA-3LoRA
LLMs之Llama-3:基于Colab平台(免费T4-GPU)利用LLaMA-Factory的GUI界面(底层采用unsloth优化框架【加速训练5~30倍+减少50%的内存占用】)对llama-3-8b-Instruct-bnb-4bit模型采用alpaca数据集【instruction-input-output】实现CLI方式/GUI傻瓜可视化方式,进配置微调→参数行LoRA指令微调→模型推
- 数据集/API 笔记:湿球黑球温度(WBGT)观测数据
UQI-LIUWJ
数据集笔记
data.gov.sgWBGT是一个综合指标,考虑了气温、湿度、风速和太阳辐射,与气温不同。报告的WBGT是过去15分钟内的平均值,每15分钟更新一次。API调用curl--requestGET\--urlhttps://api-open.data.gov.sg/v2/real-time/api/weather调用结果
- 数据集/API 笔记:新加坡最新的停车场可用车位信息 & 停车场信息
UQI-LIUWJ
笔记
数据每分钟更新一次使用date_time参数可获取特定时间点的最新停车场可用车位信息调用接口curl--requestGET\--urlhttps://api.data.gov.sg/v1/transport/carpark-availability调用结果API返回的查询时间"2025-03-04T09:10:36+08:00"代表的是API查询的时间,但每个停车场的update_datetim
- AdaBoost算法
Mr终游
机器学习算法决策树
目录一、核心原理:二、算法步骤三、关键优势:四.局限与解决五、代码示例(鸢尾花数据集)AdaBoost(AdaptiveBoosting)是一种经典的集成学习算法,通过组合多个弱分类器(如决策树)来构建强分类器。其核心思想是通过迭代优化残差(错误)和动态调整样本权重,逐步提升模型性能。以下是对AdaBoost的简明总结和关键要点:一、核心原理:提升法:通过顺序训练多个弱分类器,每轮专注修正前一个模
- 目标检测——玉米叶感染数据集
Bryan Ding
人工智能
一、重要性首先,玉米作为世界上重要的粮食作物之一,其生长状况直接影响到粮食产量和粮食安全。玉米叶感染是玉米生长过程中常见的病害之一,会导致玉米叶片出现肿胀、皱缩、扭曲变形等症状,严重时甚至可能形成瘤状物。因此,及早检测玉米叶感染对于保障玉米的健康生长和提高产量具有重要意义。其次,通过玉米叶感染检测,农民和农业科研人员可以及时发现并采取有效的防治措施,防止病害的扩散和加重。这不仅可以减少因病害导致的
- 琴韵博主 —— 工具集
琴 韵
知识库在线文档
CSDN猿如意_开发者工具箱CSDN开发助手ChromeChrome最新版离线下载internetdownloadmanager付费在线转换在线JSON字符串转Java实体类(JavaBean、Entity)在线MD5加密解密YAML、YML在线编辑器(格式化校验)在线图片转换成文字图片base64互转颜色转换颜色转换人民币大小写转换蛙蛙:英文字母大小写转换、文本工具汉字拼音在线转换Google翻
- 禁忌搜索算法求解考虑二维装箱的车辆路径问题
eternal1995
数学建模算法启发式算法
作者简介:本人擅长运筹优化建模及算法设计,包括各类车辆路径问题、生产车间调度、二三维装箱问题,熟悉CPLEX和gurobi求解器微信公众号:运筹优化与学习如有运筹优化相关建模或代码定制需求,可通过微信公众号联系我们前言之前和大家介绍了二维装箱问题、考虑二维装箱的车辆路径问题(2L-VRP),本篇推文算是前几篇推文的综合体,将介绍如何用禁忌搜索算法求解考虑二维装箱的车辆路径问题。禁忌搜索算法简介禁忌
- 光伏电池异常检测数据集
oubahe2024
目标跟踪人工智能计算机视觉能源
感兴趣的同学可以CSDN查看个人简介,获取相关数据集噢。光伏电池作为太阳能发电系统的核心组件,其性能和可靠性直接影响到整个系统的效率和寿命。在光伏电池的生产、运输、安装和使用过程中,可能会出现各种缺陷,如隐裂、断栅、热斑等。这些缺陷会导致电池的光电转换效率下降,甚至可能引发故障,影响整个光伏阵列的性能。通过及时检测光伏电池的缺陷,可以提高电池的光电转换效率,延长其使用寿命,从而提高整个光伏系统的发
- Django模型数据修改:详解两种方式
jay丿
django数据库sqlite
Django模型数据修改:详解两种方式在Django框架中,数据模型(Model)定义了应用的数据结构,并提供了与数据库交互的接口。数据的修改是Django开发中的常见操作之一。本文将详细介绍两种在Django中修改数据的方式:使用模型的save()方法和使用查询集的update()方法。方式一:使用模型的save()方法步骤概述:查询现有记录:首先,使用模型的objects.get()方法根据主
- 前有vika维格表后有飞书多维表格,打破传统的项目管理工具!
Eva洞小仙
在vika维格表公测很长一段时间后,飞书多维表格也紧跟其后,开启了飞书多维表格的内测。两者都是为了改变Excel这个传统表格的使用方式,让项目管理变得更加的轻松高效。在传统电子表格的基础上,vika维格表融入了可视化数据、多人在线编辑、低代码技术等丰富强大的功能,让众多”表哥""表姐“告别满天飞的文件传输与沟通不对等的烦恼。作为一款集科技、颜值、性能、实用于一身的多维智能表格,vika维格表还可以
- 一些高阶SQL的技巧
迷路的小犀牛
sql
高阶SQL技巧在日常的SQL操作中,很多简单的查询我们都可以通过基础的SQL语法来完成。然而,在面对复杂数据集、性能优化或者高效数据提取时,高阶SQL技巧就显得尤为重要。本文将介绍一些高阶的SQL技巧,帮助你提升SQL查询的效率和可读性。1.使用窗口函数(WindowFunctions)窗口函数是SQL中非常强大的功能,它允许我们在查询结果集的每一行上执行计算,同时不需要将数据分组。常用的窗口函数
- 深度神经网络——决策树的实现与剪枝
知来者逆
人工智能dnn决策树人工智能神经网络深度学习机器学习
概述决策树是一种有用的机器学习算法,用于回归和分类任务。“决策树”这个名字来源于这样一个事实:算法不断地将数据集划分为越来越小的部分,直到数据被划分为单个实例,然后对实例进行分类。如果您要可视化算法的结果,类别的划分方式将类似于一棵树和许多叶子。这是决策树的快速定义,但让我们深入了解决策树的工作原理。更好地了解决策树的运作方式及其用例,将帮助您了解何时在机器学习项目中使用它们。决策树的结构决策树的
- CES Asia 2025:VR/AR/XR引领科技新潮流
赛逸展张胜
vrarxr
在全球科技领域蓬勃发展的大背景下,CESAsia2025(赛逸展)即将在京盛大开幕,VR/AR/XR技术作为前沿科技的代表,将在本次展会上大放异彩,展现出令人瞩目的发展趋势和巨大潜力,同时政策优势也将为其注入强劲动力。从发展趋势来看,在CES2025上,AI智能眼镜成为全新焦点,而这也为以AR眼镜为代表的XR行业带来了更多可能性。据VR陀螺初步统计,今年CES的“AR/VR/XR”板块来自中美韩参
- R语言绘图:韦恩图
善木科研
R语言r语言生信分析生物信息数据分析
韦恩分析韦恩分析(VennAnalysis)常用于可视化不同数据集之间的交集和并集。维恩图(Venndiagram),也叫文氏图、温氏图、韦恩图、范氏图,用于显示元素集合重叠区域的关系型图表,通过图形与图形之间的层叠关系,来反应数据集之间的相交关系。在R语言中,进行韦恩分析(Venn图绘制)可以通过多个不同的包来实现,常用的包括VennDiagram、venn和ggVenn等。本文案使用ggVen
- HHO优化SVM混合核(高斯核和Sigmoid核)回归预测
WSY算法爱好者
支持向量机回归算法
训练集-平均绝对误差(MAE):0.54544训练集-平均绝对误差百分比(MAPE):0.0011634训练集-均方根误差(RMSE):0.66571训练集-决定系数(R):0.95297测试集-平均绝对误差(MAE):0.31575测试集-平均绝对误差百分比(MAPE):0.00067398测试集-均方根误差(RMSE):0.39158测试集-决定系数(R):0.97566------HHO优化
- 利用OpenMCU加深对H.323协议的理解——H.323协议阅读心得(2)
rose
H.323协议终端exchange语言table
朋友问我为什么这个阅读心得没有继续写,实在是想要完成升华不很容易。第(1)篇是个引子,心得需要实践的积累和理论的研究,马虎不得。只是为了读协议而读,不一定真正读得进去。发现一个很好理解协议的方法:利用开源协议栈。把协议栈的应用、调试,和协议的阅读结合起来,可以收到事半功倍的效果。这个方法是在进行能力集的研究中发现的。现将能力集的心得记录于下:先看一个OpenH323的应用程序OpenMCU。在Op
- 帆软tips1
foolisk
fanruan
1.分sheet预览:填报预览;2.参数区控件在SQL查询中充当字段用'${控件名称}'表示;3.表头直接筛选:相应表头加下拉框控件并绑定数据集——参数区添加相应下拉框控件并绑定数据集——给表头的下拉框控件添加事件①,以将表头所选数据传给参数区,再同步至SQL查询中的参数;4.复选下拉框实现复选:参数区——分隔符:','给实现筛选的下拉框设置默认值:参数区——控件值:值1','值2;事件①:_g(
- OpenGL 3D纹理
令狐掌门
C++OpenGL3d性能优化OpenGL3D
理论基础3D纹理(也称为体积纹理)是纹理映射的扩展,从2D平面扩展到3D空间。与2D纹理不同,3D纹理在三个维度上存储数据(宽度、高度和深度),允许在整个3D空间中采样,而不仅仅是在平面上。3D纹理的主要特性和用途:体积数据表示:用于表示完整的3D数据集,如医学扫描(CT、MRI)、气象数据等空间采样:允许在3D空间中的任意位置进行纹理采样层次细节:支持类似2D纹理的MipMap功能,但在三维空间
- VS 编译器中的 X86 和 X64:架构差异全解析
晚风る
架构
在软件开发的世界里,VisualStudio(VS)作为一款备受青睐的集成开发环境,为开发者提供了诸多便利。而在使用VS进行项目开发时,选择编译目标平台是一个关键步骤,其中X86和X64是最常见的两种选项。它们究竟有何区别呢?本文将带你一探究竟。一、架构基础X86和X64都是基于Intel架构的处理器指令集架构,但它们的发展历程和设计理念有所不同。X86:这个名称源于Intel早期的一系列16位和
- Leetcode3146. 两个字符串的排列差
ʚ发什么呆^ɞ
算法python3leetcode哈希表
题目描述:给你两个字符串s和t,每个字符串中的字符都不重复,且t是s的一个排列。排列差定义为s和t中每个字符在两个字符串中位置的绝对差值之和。返回s和t之间的排列差。代码思路:建立字符位置映射:对于字符串s中的每个字符,记录它在字符串中的位置。对于字符串t中的每个字符,同样记录它在字符串中的位置。计算排列差:遍历字符串s中的每个字符(由于t是s的排列,所以字符集是相同的),计算每个字符在两个字符串
- 基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
图像识别人工智能深度学习
一、介绍害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)","蜜蜂(bees)","甲虫(beetle)","毛虫(catterpillar)","蚯蚓(earthworms)","蜚蠊(earwig)","蚱蜢(grasshopper)","飞蛾(moth)","鼻涕虫(slug)","蜗牛
- Python 机器学习 基础 之 模型评估与改进 【评估指标与评分】的简单说明
仙魁XAN
Python机器学习基础+实战案例python机器学习模型评估与改进评估指标与评分召回率
Python机器学习基础之模型评估与改进【评估指标与评分】的简单说明目录Python机器学习基础之模型评估与改进【评估指标与评分】的简单说明一、简单介绍二、评估指标与评分1、牢记最终目标2、二分类指标1)错误类型2)不平衡数据集3)混淆矩阵4)考虑不确定性5)准确率-召回率曲线6)受试者工作特征(ROC)与AUC3、多分类指标4、回归指标5、在模型选择中使用评估指标附录一、参考文献一、简单介绍Py
- DeepSeek行业应用案例【农业】——解锁智能变革密码
未来智慧谷
人工智能
在数字化浪潮汹涌澎湃的当下,DeepSeek以其强大的技术实力,如同一股创新的洪流,席卷众多行业,为各领域带来了前所未有的变革与突破。本案例集初步收录了40多个来自农业、制造业、汽车行业、手机行业、智能家居、物流、云服务、办公、网络安全、金融、医疗、教育等多个关键行业的应用案例。从助力农业实现病虫害精准预测与智能灌溉,到推动制造业生产故障预警与产品质量提升;从优化汽车智能交互体验与智能驾驶辅助,到
- 深度学习分类回归(衣帽数据集)
何仙鸟
深度学习分类回归
一、步骤1加载数据集fashion_minst2搭建classNeuralNetwork模型3设置损失函数,优化器4编写评估函数5编写训练函数6开始训练7绘制损失,准确率曲线二、代码导包,打印版本号:importmatplotlibasmplimportmatplotlib.pyplotasplt%matplotlibinlineimportnumpyasnpimportsklearnimport
- MySQL查询的时候出现 Expression #1 of SELECT list is not in GROUP BY clause and contains nonaggre报错
wbyte
数据库LinuxMySQL报错selectlistisnotingroupbyclau
Expression#1ofSELECTlistisnotinGROUPBYclauseandcontainsnonaggre…后面一大堆出错就是这样我们可以在网上看到很多解释MySQL5.7.5及以上功能依赖检测功能。如果启用了ONLY_FULL_GROUP_BYSQL模式(默认情况下),MySQL将拒绝选择列表,HAVING条件或ORDERBY列表的查询引用在GROUPBY子句中既未命名的非集
- Python爬虫下载加州高速路网PeMS交通流量数据集及交通公开数据集分享
郑宜维David
Python爬虫下载加州高速路网PeMS交通流量数据集及交通公开数据集分享Python爬虫下载加州高速路网PeMS交通流量数据集以及交通公开数据集分享项目地址:https://gitcode.com/Resource-Bundle-Collection/123b3本仓库提供了一个Python爬虫程序,用于自动化下载加州高速路网PeMS的交通流量数据集,避免手动操作的繁琐。此外,还分享了部分已下载的
- L1与L2正则化:防止过拟合的双刃剑
XianxinMao
人工智能人工智能机器学习算法
标题:L1与L2正则化:防止过拟合的双刃剑文章信息摘要:L1和L2正则化是防止机器学习模型过拟合的两种关键技术。L1正则化(Lasso)通过将不重要的特征权重归零来实现特征选择,适用于稀疏模型和高维数据集,但可能导致欠拟合。L2正则化(Ridge)则通过减少权重的大小来防止过拟合,适用于处理高度相关特征和噪声数据,提高模型稳定性。两者各有优势,选择哪种正则化技术取决于数据集特性和模型需求。有时,结
- 覆盖数学/代码/科学/谜题,高质量推理数据集汇总,助力复现 DeepSeek 超强推理能力
hyperai
近期,DeepSeek-R1引发的推理模型热潮仍在持续走高——1月31日,OpenAI推出全新推理模型o3-mini;2月18日,xAI推出Grok3,包含具备推理能力的Grok-3ReasoningBeta和Grok-3miniReasoning;2月25日,Anthropic推出首款混合推理模型Claude3.7Sonnet。诚然,在大模型日益同质化、竞争激烈的背景下,推理能力已经成为衡量其性
- RAG组件:向量数据库(Milvus)
CITY_OF_MO_GY
milvus人工智能
在当前大模型盛行的时代,大模型的垂类微调、优化成为产业落地、行业应用的关键;RAG技术应运而生,主要解决大模型对专业知识、实效性知识欠缺的问题;RAG的核心工作逻辑是将专业知识、实效知识等大模型欠缺的知识进行收集、打包、保存为一个知识库,在用到该部分知识的时候,可以通过检索关键信息,将知识库內对应知识片段进行返回,再整合为一个结构化的prompt(提示词)输入给大模型,这样以来,大模型就可以结合这
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出