【无人车】用于无人地面车辆的路径跟踪算法(Matlab代码实现)

欢迎来到本博客 ❤️ ❤️

博主优势: 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

座右铭:行百里者,半于九十。

本文目录如下:
目录
1 概述
2 运行结果
3 参考文献
4 Matlab代码实现

1 概述

无人驾驶技术是当前社会的热门技术之一,无人驾驶车辆的应用可以很好地解决环境污染和交通拥堵两大主要社会问题。而在无人驾驶车辆的所有技术中,车辆的底层控制技术和路径跟踪技术是无人车的基础技术。本文用于无人地面车辆的路径跟踪算法,详情可见运行结果图。

2 运行结果

【无人车】用于无人地面车辆的路径跟踪算法(Matlab代码实现)_第1张图片

运行视频

【无人车】用于无人地面车辆的路径跟踪算法(Matlab代码实现)_第2张图片
【无人车】用于无人地面车辆的路径跟踪算法(Matlab代码实现)_第3张图片
【无人车】用于无人地面车辆的路径跟踪算法(Matlab代码实现)_第4张图片
【无人车】用于无人地面车辆的路径跟踪算法(Matlab代码实现)_第5张图片
【无人车】用于无人地面车辆的路径跟踪算法(Matlab代码实现)_第6张图片
【无人车】用于无人地面车辆的路径跟踪算法(Matlab代码实现)_第7张图片
【无人车】用于无人地面车辆的路径跟踪算法(Matlab代码实现)_第8张图片

部分代码:

clear;

clc;

close all;

addpath('Params','TargetCourse');

%% Choose Vehicle Algrithm Course

Vehicle = 'C-Class-Hatchback';

% B-Class-Hatchback C-Class-Hatchback

path_tracking_alg = 'Kinematics MPC V W';

% Pure Pursuit,Stanley,Kinematics MPC V Delta,Dynamics MPC,Kinematics MPC V W

roadmap_name = 'eight';

% eight road double

%% Get Params

Reference = getTargetCourseParams(roadmap_name);

Reference = splinfy(Reference);

VehicleParams = getVehicleParams(Vehicle);

AlgParams = getAlgParams(path_tracking_alg,VehicleParams);

Reference.type = roadmap_name;

VehicleParams.type = Vehicle;

AlgParams.type = path_tracking_alg;

time_step = AlgParams.ts;

%% Initialize State

x0 = Reference.cx(1000);y0 = Reference.cy(1000);yaw0 = Reference.cyaw(1000);s0 = Reference.s(1000);

delta0 = 0;v0 = 20;w0 = 0;vy0=0;

desired_velocity = 20;

desired_angular_v = 0;

desired_delta = 0;

i = 0;simulation_time = 0;

Vehicle_State = [x0,y0,yaw0,s0,v0,w0,vy0];

Control_State = delta0;

%% Log

log.i=i;log.time=simulation_time;

log.X=x0;log.Y=y0;log.Yaw=yaw0;log.Odometry=s0;

log.Vx=v0;log.Angular_V=w0;

log.delta=delta0;

log.error=0;log.solvertime=0;

[path_figure,result_figure,delta_line,error_line,solve_time_line]= Visualization_Init(AlgParams, Reference,...

VehicleParams, Vehicle_State, Control_State,simulation_time);

isGoal = norm(Vehicle_State(1:2)-[Reference.cx(end),Reference.cy(end)])<1 && (Reference.s(end)-Vehicle_State(4))<1;

disp([path_tracking_alg,' ',roadmap_name,' simulation start!']);

%% path tracking algrithm

while ~isGoal

tic;

i = i + 1;

simulation_time = simulation_time + time_step;

tic;

switch AlgParams.type

case "Pure Pursuit"

[steer_cmd,error,preview_point] = UGV_PP(Reference,VehicleParams,AlgParams,Vehicle_State,Control_State);

case "Stanley"

[steer_cmd,error,preview_point] = UGV_Stanley(Reference,VehicleParams,AlgParams,Vehicle_State,Control_State);

case "Kinematics MPC V W"

Control_ref=[desired_velocity,desired_angular_v];

[control_cmd,error,MPCprediction] = UGV_Kinematics_MPC_V_W(Reference,VehicleParams,AlgParams,Vehicle_State,Control_ref);

case "Kinematics MPC V Delta"

Control_ref=[desired_velocity,desired_delta];

[control_cmd,error,MPCprediction] = UGV_Kinematics_MPC_V_Delta(Reference,VehicleParams,AlgParams,Vehicle_State,Control_ref);

case "Dynamics MPC"

Control_State=[delta0,desired_velocity];

[steer_cmd,error,MPCprediction,update_state] = UGV_Dynamics_MPC(Reference,VehicleParams,AlgParams,Vehicle_State,Control_State);

end

toc;

%% update vehicle state

if AlgParams.type == "Pure Pursuit" || AlgParams.type == "Stanley" || AlgParams.type == "Dynamics MPC" || AlgParams.type == "Kinematics MPC V Delta"

wheel_base = VehicleParams.wheel_base;t=time_step;

if AlgParams.type ~= "Kinematics MPC V Delta"

delta=steer_cmd;v1=v0;

else

delta=control_cmd(2);v1=control_cmd(1);

end

x0=Vehicle_State(1);y0=Vehicle_State(2);yaw0=Vehicle_State(3);s0=Vehicle_State(4);v0=Vehicle_State(5);

x1=x0+v0*cos(yaw0)*t;y1=y0+v0*sin(yaw0)*t;yaw1=yaw0+v0/wheel_base*tan(delta)*t;s1=s0+v0*t;w1=(yaw1-yaw0)/t;

Vehicle_State=[x1,y1,yaw1,s1,v1,w1];

Vehicle_State(3)=wrapTo2Pi(Vehicle_State(3));

if AlgParams.type == "Dynamics MPC"

Vehicle_State(7)=update_state(2);

end

elseif AlgParams.type == "Kinematics MPC V W"

wheel_base = VehicleParams.wheel_base;t=time_step;

x0=Vehicle_State(1);y0=Vehicle_State(2);yaw0=Vehicle_State(3);s0=Vehicle_State(4);

v1=control_cmd(1);w1=control_cmd(2);

x1=x0+v1*cos(yaw0)*t;y1=y0+v1*sin(yaw0)*t;yaw1=yaw0+w1*t;s1=s0+v1*t;

Vehicle_State=[x1,y1,yaw1,s1,v1,w1];

Vehicle_State(3)=wrapTo2Pi(Vehicle_State(3));

delta = atan(w1*wheel_base/v1);

end

log.i(end+1)=i;log.time(end+1)=simulation_time;

log.X(end+1)=x1;log.Y(end+1)=y1;log.Yaw(end+1)=yaw1;log.Odometry(end+1)=s1;

log.Vx(end+1)=v1;log.Angular_V(end+1)=w1;log.delta(end+1)=delta;

log.error(end+1)=error;log.solvertime(end+1)=toc;

%% show animation

set(groot, 'CurrentFigure', path_figure);cla;

switch (Reference.type)

case {'eight' 'road'}

axis([x1-40,x1+40,y1-40,y1+40]);

plot_car(VehicleParams, Vehicle_State, delta);

case {'double','Emergency'}

end

h1=plot(Reference.cx, Reference.cy, '-k.','LineWidth',3, 'markersize',3,'DisplayName','Target Trajectory');

h2=plot(log.X, log.Y, '-b.','LineWidth', 3,'markersize',3,'DisplayName','Real Trajectory');

h3=plot(Vehicle_State(1),Vehicle_State(2),'Marker','p','MarkerFaceColor','red','MarkerSize',12.0,'DisplayName','CoG');

switch (AlgParams.type)

case {"Pure Pursuit","Stanley"}

h4=plot(preview_point(1),preview_point(2),'d','MarkerFaceColor','yellow','MarkerSize',12,'DisplayName','Preview Point');

legend([h1 h2 h3 h4],{'Target Trajectory','Real Trajectory','CoG','Preview Point'});

case {"Kinematics MPC V W","Kinematics MPC V Delta","Dynamics MPC"}

h4=plot(MPCprediction(1,:),MPCprediction(2,:), '-y.','LineWidth', 3,'markersize',3,'DisplayName','Prediction Trajectory');

legend([h1 h2 h3 h4],{'Target Trajectory','Real Trajectory','CoG','MPC Prediction Trajectory'});

end

title(['Time[s]:',num2str(round(simulation_time,3),3),'s',' Velocity[m/s]:',num2str(round(v1,2))]);

set(groot, 'CurrentFigure', result_figure);

set(delta_line,'Xdata',log.time,'Ydata',log.delta/pi*180);

set(error_line,'Xdata',log.time,'Ydata',log.error);

set(solve_time_line,'Xdata',log.time,'Ydata',log.solvertime);

pause(0.0001);

isGoal = norm(Vehicle_State(1:2)-[Reference.cx(end),Reference.cy(end)])<1^2 && (Reference.s(end)-Vehicle_State(4))<1;

end

disp([path_tracking_alg,' Get Goal ! simulation stop!']);

% syms x(t) y(t) yaw(t) s(t);

% eqn1 = diff(x,t) == v0*cos(yaw); eqn2 = diff(y,t) == v0*sin(yaw);

% eqn3 = diff(yaw,t) == v0*tan(steer_cmd)/wheel_base; eqn4 = diff(s,t) == v0;

% cond1 = x(0) == x0;cond2 = y(0) == y0;cond3 = yaw(0) == yaw0;cond4 = s(0) == s0;

% Up_State = dsolve(eqn1,eqn2,eqn3,eqn4,cond1,cond2,cond3,cond4);

% t=time_step;

% Vehicle_State = [eval([Up_State.x,Up_State.y,Up_State.yaw,eval(Up_State.s)]),v0,(eval(Up_State.yaw)-yaw0)/t];

% wheel_base = VehicleParams.wheel_base;

% x0=Vehicle_State(1);y0=Vehicle_State(2);yaw0=Vehicle_State(3);s0=Vehicle_State(4);

% v0=control_cmd(1);w0=control_cmd(2);

% syms x(t) y(t) yaw(t) s(t);

% eqn1 = diff(x,t) == v0*cos(yaw); eqn2 = diff(y,t) == v0*sin(yaw);

% eqn3 = diff(yaw,t) == w0; eqn4 = diff(s,t) == v0;

% cond1 = x(0) == x0;cond2 = y(0) == y0;cond3 = yaw(0) == yaw0;cond4 = s(0) == s0;

% Up_State = dsolve(eqn1,eqn2,eqn3,eqn4,cond1,cond2,cond3,cond4);

% t=time_step;

% Vehicle_State = [eval([Up_State.x,Up_State.y,Up_State.yaw,eval(Up_State.s)]),v0,(eval(Up_State.yaw)-yaw0)/t];

3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]樊晓楠. 无人观光车底层控制系统改造及路径跟踪算法研究[D].长安大学,2019.

4 Matlab代码实现

你可能感兴趣的:(无人机,matlab,算法,数学建模)