武忠祥老师每日一题||不定积分基础训练(六)

在这里插入图片描述
解法一:
求 出 f ( x ) , 进 而 对 f ( x ) 进 行 积 分 。 求出f(x),进而对f(x)进行积分。 f(x),f(x)
令 ln ⁡ x = t , 原 式 f ( t ) = ln ⁡ ( 1 + e t ) e t 令\ln x=t,原式f(t)=\frac{\ln (1+e^t)}{e^t} lnx=t,f(t)=etln(1+et)
则 ∫ f ( x )   d x = ∫ ln ⁡ ( 1 + e x ) e x   d x = ∫ ln ⁡ ( 1 + e x ) e − x   d x 则\int f(x)\,{\rm d}x=\int\frac{\ln(1+e^x)}{e^x}\,{\rm d}x\\=\int \ln (1+e^x)e^{-x}\,{\rm d}x f(x)dx=exln(1+ex)dx=ln(1+ex)exdx
= − ∫ ln ⁡ ( 1 + e x )   d e − x =-\int\ln(1+e^x)\,{\rm d}{e^{-x}} =ln(1+ex)dex
= − ln ⁡ ( 1 + e x ) e − x + ∫ e − x   d ln ⁡ ( 1 + e x ) =-\ln(1+e^x)e^{-x}+\int e^{-x}\,{\rm d}{\ln (1+e^x)} =ln(1+ex)ex+exdln(1+ex)
= − ln ⁡ ( 1 + e x ) e − x + ∫ e − x 1 1 + e x × e x   d x =-\ln(1+e^x)e^{-x}+\int e^{-x}\frac{1}{1+e^x}\times e^x\,{\rm d}x =ln(1+ex)ex+ex1+ex1×exdx
= − ln ⁡ ( 1 + e x ) e − x + ∫ 1 1 + e x   d x =-\ln(1+e^x)e^{-x}+\int\frac{1}{1+e^x}\,{\rm d}x =ln(1+ex)ex+1+ex1dx
= − ln ⁡ ( 1 + e x ) e − x + x − ln ⁡ ( e x + 1 ) + C =-\ln(1+e^x)e^{-x}+x-\ln(e^x+1)+C =ln(1+ex)ex+xln(ex+1)+C


计 算 ∫ 1 1 + e x   d x : 计算\int\frac{1}{1+e^x}\,{\rm d}x: 1+ex1dx:
原 式 = ∫ ( 1 + e x ) − e x 1 + e x   d x 原式=\int \frac{(1+e^x)-e^x}{1+e^x}\,{\rm d}x =1+ex(1+ex)exdx
= ∫ ( 1 − e x 1 + e x )   d x =\int (1-\frac{e^x}{1+e^x})\,{\rm d}x =(11+exex)dx
= x − ∫ d ( e x + 1 ) 1 + e x =x-\int\frac{{\rm d}{(e^x+1)}}{1+e^x} =x1+exd(ex+1)
= x − ln ⁡ ( e x + 1 ) + C =x-\ln(e^x+1)+C =xln(ex+1)+C


解法二:
令 t = ln ⁡ x ( x = e t ) ∫ f ( ln ⁡ x )   d ln ⁡ x 令t=\ln x(x=e^t)\int f(\ln x)\,{\rm d}{\ln x} t=lnx(x=et)f(lnx)dlnx
= ∫ ln ⁡ ( 1 + x ) x × 1 x   d x =\int \frac{\ln (1+x)}{x}\times \frac{1}{x}\,{\rm d}x =xln(1+x)×x1dx
= ∫ ln ⁡ ( 1 + x ) x 2   d x =\int \frac{\ln (1+x)}{x^2}\,{\rm d}x =x2ln(1+x)dx
= − ∫ ln ⁡ ( 1 + x )   d 1 x =-\int \ln(1+x)\,{\rm d}{\frac{1}{x}} =ln(1+x)dx1
= − ln ⁡ ( 1 + x ) x + ∫ 1 x × 1 x + 1   d x =-\frac{\ln (1+x)}{x}+\int\frac{1}{x}\times\frac{1}{x+1}\,{\rm d}x =xln(1+x)+x1×x+11dx
= − ln ⁡ ( 1 + x ) x + ln ⁡ ∣ x x + 1 ∣ + C =-\frac{\ln (1+x)}{x}+\ln \lvert\frac{x}{x+1} \rvert+C =xln(1+x)+lnx+1x+C
= − ln ⁡ ( 1 + e t ) e t + ln ⁡ ∣ e t e t + 1 ∣ + C =-\frac{\ln(1+e^t)}{e^t}+\ln \lvert \frac{e^t}{e^t+1}\rvert+C =etln(1+et)+lnet+1et+C
由于积分变量为x,则所求为
− ln ⁡ ( 1 + e x ) e x + ln ⁡ ∣ e x e x + 1 ∣ + C -\frac{\ln(1+e^x)}{e^x}+\ln \lvert \frac{e^x}{e^x+1}\rvert+C exln(1+ex)+lnex+1ex+C

你可能感兴趣的:(武忠祥老师每日一题,算法,c语言,线性代数)