文章作者:Tyan
博客:noahsnail.com | CSDN |
1. Description
2. Solution
解析:Version 1,贪心算法,由于矩阵中的每一个元素matrix[i][j]
一定不大于min(rowSum[i], colSum[j]
,因此将matrix[i][j]
设置为min(rowSum[i], colSum[j]
就可以解决一行或一列的数值设置问题,当前行或当前列剩余的元素为0
,遍历所有元素存在重复设置的问题。Version 2进行了优化,减少了重复设置的问题,如果输出Version 1最终的rowSum, colSum
,会发现所有的元素都变为了0,而Version 2的则不是,Version对于不再用到的rowSum[i], colSum[j]
,没有减去matrix[i][j]
。
- Version 1
class Solution:
def restoreMatrix(self, rowSum: List[int], colSum: List[int]) -> List[List[int]]:
m = len(rowSum)
n = len(colSum)
matrix = [n * [0] for _ in range(m)]
for i in range(m):
for j in range(n):
matrix[i][j] = min(rowSum[i], colSum[j])
rowSum[i] -= matrix[i][j]
colSum[j] -= matrix[i][j]
return matrix
- Version 2
class Solution:
def restoreMatrix(self, rowSum: List[int], colSum: List[int]) -> List[List[int]]:
m = len(rowSum)
n = len(colSum)
matrix = [n * [0] for _ in range(m)]
i = 0
j = 0
while i < m and j < n:
if rowSum[i] > colSum[j]:
matrix[i][j] = colSum[j]
rowSum[i] -= colSum[j]
j += 1
elif rowSum[i] < colSum[j]:
matrix[i][j] = rowSum[i]
colSum[j] -= rowSum[i]
i += 1
else:
matrix[i][j] = rowSum[i]
i += 1
j += 1
return matrix
Reference
- https://leetcode.com/problems/find-valid-matrix-given-row-and-column-sums/