算法怎么算:二分为什么是闪电?

引言

在基础查询算法中有一个是不能避开的点:二分查找。

接触算法的同学翻开书的前几节,大概率是桶排序、冒泡、快排、然后就是经典的二分查找。

一开始接触的话不容易从理论中联系到生产实际上,查找,这个最基本的事情,怎么和项目级,产品级、工业级的实际使用构建联系起来呢?
这个问题是我们在展开二分法查找前要说明的问题,我们首先要达成的共识是要对它产生足够的兴趣。

什么是查找

查找,是将储备在需要时提取并使用的一个过程。任何事情,只要你想要通过某种行为达到目的,那么这种行为就一定包含查找的过程。

所以二分查找就可以认为是为了更快达到目的使用的一种手段。接下来让我们说说什么是二分。

什么是二分

所谓二分,就是指将线性的处理路线,变化为跳跃的。也因此他多了一些前置条件,来保证跳跃的过程不会忽视路过的风景。 —— 有序。

因为有序,我们就可以进行逻辑推理,不会受到混沌随机的因素干扰,所以让我们开始二分查找的探讨吧。。

思想核心是什么

首先让我们站在起点,这是一切的开始。
接着我们向前跳跃,落地之后看看脚下的内容和我的目标有多大的差距。

  • 如果距离我们的目标要大,说明目标在我们后方(跳过了),接下来我们往回跳。
  • 如果距离我们的目标要小,说明目标在我们前方(还没到),接下来我们再前跳。
  • 我们并不关心在跳跃的过程中飞过了哪些东西,我们只要知道目标在哪,我们离它有多远。

这就是二分查找的思想,接下来解释:为什么他是闪电

为什么他会这么快

如果从逻辑上解答,在有序中我们可以通过推理跳过最为漫长的认知部分。
如果从行为上解答,他找的数要少的多。(这是有序给他的基础支撑)。

举个例子

如果我想要从十亿个数中找到目标,单次查找要一毫秒,那我线性查找可是要以年做单位的,(有兴趣的朋友可以算算具体的数据)。如果我使用二分查找的话,我实际的次数是30次。不到一秒钟。

这个例子有意义吗?其实,这是美国NASA在航天器登录前的两秒内要解决的事情。那十亿个数是他的登陆参数。

到此,我们知道了二分法查找的意义和思想。接下来,我们要回到实际中了。

代码实现

这里我使用了两种方式,感兴趣的同学可以用更多的方式自己尝试。

C++



/*
 * @Author       : Zry && [email protected]
 * @Date         : 2023-05-31 09:15:18
 * @LastEditors  : Zry && [email protected]
 * @LastEditTime : 2023-05-31 09:36:44
 * @FilePath     : /zryTest/test/C++/二分法查找/binarySearch.cxx
 * @Description  :
 *
 * Copyright (c) 2023 by [email protected], All Rights Reserved.
 */

#include 
#include 

using namespace std;

#define int_t int
#define ZRY_OK 0
#define ZRY_NO_FIND -1

int_t binarySearch(int *List, const int iLen, const int item)
{
    int ilow = 0;
    int ihght = iLen - 1;
    int imin = 0;
    for (int i = 0; ilow <= ihght; i++)
    {
        imin = (ilow + ihght) / 2;
        int iguess = List[imin];
        if (iguess == item)
        {
            return imin;
        }
        if (iguess > item)
        {
            ihght = imin - 1;
        }
        else
        {
            ilow = imin + 1;
        }
        printf("第 %d 查找 low=%d hight=%d\n", i, ilow, ihght);
    }
    return ZRY_NO_FIND;
}
void test_binarySearch()
{
    int list[] = {1, 2, 3, 4, 5, 65, 66, 67, 68, 69, 77, 78, 79, 80, 100};
    printf("开始测试1\n");
    assert(ZRY_NO_FIND != binarySearch(list, sizeof(list) / sizeof(int), 77));
    printf("开始测试2\n");
    assert(ZRY_NO_FIND == binarySearch(list, sizeof(list) / sizeof(int), 55));
    printf("测试结束\n");
}

int main()
{
    test_binarySearch();
    return ZRY_OK;
}

Python

def binarySearch(List, item):
    iLen = len(List)
    ilow = 0
    ihght = iLen - 1
    imin = 0
    i = 0
    while ilow <= ihght:
        imin = (ilow + ihght) // 2
        iguess = List[imin]
        if iguess == item:
            return imin
        if iguess > item:
            ihght = imin - 1
        else:
            ilow = imin + 1
        print("第 %d 查找 low=%d hight=%d" % (i, ilow, ihght))
        i += 1
    return -1

def test_binarySearch():
    list = [1, 2, 3, 4, 5, 65, 66, 67, 68, 69, 77, 78, 79, 80, 100]
    print("开始测试1")
    assert(binarySearch(list, 77) != -1)
    print("开始测试2")
    assert(binarySearch(list, 55) == -1)
    print("测试结束")

if __name__ == '__main__':
    test_binarySearch()

总结

我们可以进一步的扩大二分的场景,从参数查找、到并发请求响应,从信息索引到数据支撑。

脱去外壳,只要我们可以在有序中找寻我们的目标,就可以二分。

你可能感兴趣的:(Qt/c++,算法怎么算,算法,c++,开发语言,python,学习方法)