注意力&Transformer

注意力

注意力分为两步:

  1. 计算注意力分布 α \alpha α
    注意力&Transformer_第1张图片
  • 其实就是,打分函数进行打分,然后softmax进行归一化
  1. 根据 α \alpha α来计算输入信息的加权平均(软注意力)
    • 其选择的信息是所有输入向量在注意力下的分布

注意力&Transformer_第2张图片

  • 打分函数
    注意力&Transformer_第3张图片
  • 只关注某一个输入向量, 叫作硬性注意力( Hard Attention)
    注意力&Transformer_第4张图片
  • 本质上,从所有输入向量里面选一个向量(最具代表性)

键值对注意力

注意力&Transformer_第5张图片

  • Q-V 和 Q-KV结构对比
    注意力&Transformer_第6张图片
  • 机器翻译的例子
    注意力&Transformer_第7张图片
  • CNN中的注意力
    注意力&Transformer_第8张图片
    注意力&Transformer_第9张图片

各种注意力的定义

注意力&Transformer_第10张图片
多头注意力:

与其只使用单独一个注意力汇聚, 我们可以用独立学习得到的h组不同的 线性投影(linear projections)来变换查询、键和值。然后,这h组变换后的查询、键和值将并行地送到注意力汇聚中。 最后,将这h个注意力汇聚的输出拼接在一起, 并且通过另一个可以学习的线性投影进行变换, 以产生最终输出。这称为多头注意力。

  • 对于h个注意力汇聚输出,每一个注意力汇聚都被称作一个头(head)。

自注意力:在深度学习中,经常使用卷积神经网络(CNN)或循环神经网络(RNN)对序列进行编码。

有了注意力机制之后,我们将词元序列输入注意力池化中, 以便同一组词元同时充当查询、键和值。 具体来说,每个查询都会关注所有的键-值对并生成一个注意力输出。 由于查询、键和值来自同一组输入,因此被称为 自注意力(self-attention)

位置编码:

  • 在处理词元序列时,循环神经网络是逐个的重复地处理词元的, 而自注意力则因为并行计算而放弃了顺序操作。
  • 为了使用序列的顺序信息,通过在输入表示中添加 位置编码(positional encoding)来注入绝对的或相对的位置信息
  • 位置编码可以通过学习得到也可以直接固定得到。

在位置嵌入矩阵P中, 行代表词元在序列中的位置列代表位置编码的不同维度

  • Layer Normalization
  • 残差连接
  • Masked mutil-head attetion
    • mask 表示掩码,它对某些值进行掩盖,使其在参数更新时不产生效果。Transformer 模型里面涉及两种 mask,分别是 padding mask 和 sequence mask。
    • 其中,padding mask 在所 有的 scaled dot-product attention 里面都需要用到
    • sequence mask 只有在 decoder的 self-attention 里面用到,sequence mask 是为了使得 decoder 不能看见未来的信息。

Transformer

注意力&Transformer_第11张图片
注意力&Transformer_第12张图片

  • 细节详解

克服的问题:

  1. RNNs的序列模型,串行编码具有天然的顺序属性,但是不能并行
  2. CNN可以并行,但是是局部连接,且无顺序属性
  • 解决:用CNN去代替RNN,让CNN有重合部分达到连续的效果

注意力&Transformer_第13张图片
注意力&Transformer_第14张图片

self-attendtion

  • 把一个输入的向量拆成3个特征图,qkv是三个不同的权重矩阵
    注意力&Transformer_第15张图片
    注意力&Transformer_第16张图片
  • 记住这句核心话,拿着每个query去对每个key做attendtion运算
    注意力&Transformer_第17张图片
  • α \alpha α权重要归一化
    注意力&Transformer_第18张图片
  • 计算得到QKV矩阵
    注意力&Transformer_第19张图片
    注意力&Transformer_第20张图片

Demo to understand

注意力&Transformer_第21张图片
注意力&Transformer_第22张图片
注意力&Transformer_第23张图片
注意力&Transformer_第24张图片
注意力&Transformer_第25张图片

注意力&Transformer_第26张图片

Transformer Encoder

  • 位置编码
  • 层归一化
  • 直连边
  • 逐位的FNN
    注意力&Transformer_第27张图片
    注意力&Transformer_第28张图片
    注意力&Transformer_第29张图片

  • 当使用神经网络来处理一个变长的向量序列时,我们通常可以使用卷积网络循环网络进行编码来得到一个相同长度的输出向量序列。
    注意力&Transformer_第30张图片
  • 如何建立非局部(Non-local)的依赖关系 -> 自注意力模型

注意力&Transformer_第31张图片


Code

注意力&Transformer_第32张图片

class PositionalEncoding(nn.Module):
    """
    compute sinusoid encoding.
    """
    def __init__(self, d_model, max_len, device):
        """
        constructor of sinusoid encoding class

        :param d_model: dimension of model
        :param max_len: max sequence length
        :param device: hardware device setting
        """
        super(PositionalEncoding, self).__init__()

        # same size with input matrix (for adding with input matrix)
        self.encoding = torch.zeros(max_len, d_model, device=device)
        self.encoding.requires_grad = False  # we don't need to compute gradient

        pos = torch.arange(0, max_len, device=device)
        pos = pos.float().unsqueeze(dim=1)
        # 1D => 2D unsqueeze to represent word's position

        _2i = torch.arange(0, d_model, step=2, device=device).float()
        # 'i' means index of d_model (e.g. embedding size = 50, 'i' = [0,50])
        # "step=2" means 'i' multiplied with two (same with 2 * i)

        self.encoding[:, 0::2] = torch.sin(pos / (10000 ** (_2i / d_model)))
        self.encoding[:, 1::2] = torch.cos(pos / (10000 ** (_2i / d_model)))
        # compute positional encoding to consider positional information of words

    def forward(self, x):
        # self.encoding
        # [max_len = 512, d_model = 512]

        batch_size, seq_len = x.size()
        # [batch_size = 128, seq_len = 30]

        return self.encoding[:seq_len, :]
        # [seq_len = 30, d_model = 512]
        # it will add with tok_emb : [128, 30, 512]         

注意力&Transformer_第33张图片

class MultiHeadAttention(nn.Module):

    def __init__(self, d_model, n_head):
        super(MultiHeadAttention, self).__init__()
        self.n_head = n_head
        self.attention = ScaleDotProductAttention()
        self.w_q = nn.Linear(d_model, d_model)
        self.w_k = nn.Linear(d_model, d_model)
        self.w_v = nn.Linear(d_model, d_model)
        self.w_concat = nn.Linear(d_model, d_model)

    def forward(self, q, k, v, mask=None):
        # 1. dot product with weight matrices
        q, k, v = self.w_q(q), self.w_k(k), self.w_v(v)

        # 2. split tensor by number of heads
        q, k, v = self.split(q), self.split(k), self.split(v)

        # 3. do scale dot product to compute similarity
        out, attention = self.attention(q, k, v, mask=mask)
        
        # 4. concat and pass to linear layer
        out = self.concat(out)
        out = self.w_concat(out)

        # 5. visualize attention map
        # TODO : we should implement visualization

        return out

    def split(self, tensor):
        """
        split tensor by number of head

        :param tensor: [batch_size, length, d_model]
        :return: [batch_size, head, length, d_tensor]
        """
        batch_size, length, d_model = tensor.size()

        d_tensor = d_model // self.n_head
        tensor = tensor.view(batch_size, length, self.n_head, d_tensor).transpose(1, 2)
        # it is similar with group convolution (split by number of heads)

        return tensor

    def concat(self, tensor):
        """
        inverse function of self.split(tensor : torch.Tensor)

        :param tensor: [batch_size, head, length, d_tensor]
        :return: [batch_size, length, d_model]
        """
        batch_size, head, length, d_tensor = tensor.size()
        d_model = head * d_tensor

        tensor = tensor.transpose(1, 2).contiguous().view(batch_size, length, d_model)
        return tensor

注意力&Transformer_第34张图片

class ScaleDotProductAttention(nn.Module):
    """
    compute scale dot product attention

    Query : given sentence that we focused on (decoder)
    Key : every sentence to check relationship with Qeury(encoder)
    Value : every sentence same with Key (encoder)
    """

    def __init__(self):
        super(ScaleDotProductAttention, self).__init__()
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, q, k, v, mask=None, e=1e-12):
        # input is 4 dimension tensor
        # [batch_size, head, length, d_tensor]
        batch_size, head, length, d_tensor = k.size()

        # 1. dot product Query with Key^T to compute similarity
        k_t = k.transpose(2, 3)  # transpose
        score = (q @ k_t) / math.sqrt(d_tensor)  # scaled dot product

        # 2. apply masking (opt)
        if mask is not None:
            score = score.masked_fill(mask == 0, -10000)

        # 3. pass them softmax to make [0, 1] range
        score = self.softmax(score)

        # 4. multiply with Value
        v = score @ v

        return v, score

注意力&Transformer_第35张图片

class LayerNorm(nn.Module):
    def __init__(self, d_model, eps=1e-12):
        super(LayerNorm, self).__init__()
        self.gamma = nn.Parameter(torch.ones(d_model))
        self.beta = nn.Parameter(torch.zeros(d_model))
        self.eps = eps

    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        var = x.var(-1, unbiased=False, keepdim=True)
        # '-1' means last dimension. 

        out = (x - mean) / torch.sqrt(var + self.eps)
        out = self.gamma * out + self.beta
        return out

注意力&Transformer_第36张图片

class PositionwiseFeedForward(nn.Module):

    def __init__(self, d_model, hidden, drop_prob=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.linear1 = nn.Linear(d_model, hidden)
        self.linear2 = nn.Linear(hidden, d_model)
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(p=drop_prob)

    def forward(self, x):
        x = self.linear1(x)
        x = self.relu(x)
        x = self.dropout(x)
        x = self.linear2(x)
        return x

注意力&Transformer_第37张图片

class EncoderLayer(nn.Module):

    def __init__(self, d_model, ffn_hidden, n_head, drop_prob):
        super(EncoderLayer, self).__init__()
        self.attention = MultiHeadAttention(d_model=d_model, n_head=n_head)
        self.norm1 = LayerNorm(d_model=d_model)
        self.dropout1 = nn.Dropout(p=drop_prob)

        self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=ffn_hidden, drop_prob=drop_prob)
        self.norm2 = LayerNorm(d_model=d_model)
        self.dropout2 = nn.Dropout(p=drop_prob)

    def forward(self, x, src_mask):
        # 1. compute self attention
        _x = x
        x = self.attention(q=x, k=x, v=x, mask=src_mask)
        
        # 2. add and norm
        x = self.dropout1(x)
        x = self.norm1(x + _x)
        
        # 3. positionwise feed forward network
        _x = x
        x = self.ffn(x)
      
        # 4. add and norm
        x = self.dropout2(x)
        x = self.norm2(x + _x)
        return x
class Encoder(nn.Module):

    def __init__(self, enc_voc_size, max_len, d_model, ffn_hidden, n_head, n_layers, drop_prob, device):
        super().__init__()
        self.emb = TransformerEmbedding(d_model=d_model,
                                        max_len=max_len,
                                        vocab_size=enc_voc_size,
                                        drop_prob=drop_prob,
                                        device=device)

        self.layers = nn.ModuleList([EncoderLayer(d_model=d_model,
                                                  ffn_hidden=ffn_hidden,
                                                  n_head=n_head,
                                                  drop_prob=drop_prob)
                                     for _ in range(n_layers)])

    def forward(self, x, src_mask):
        x = self.emb(x)

        for layer in self.layers:
            x = layer(x, src_mask)

        return x
class DecoderLayer(nn.Module):

    def __init__(self, d_model, ffn_hidden, n_head, drop_prob):
        super(DecoderLayer, self).__init__()
        self.self_attention = MultiHeadAttention(d_model=d_model, n_head=n_head)
        self.norm1 = LayerNorm(d_model=d_model)
        self.dropout1 = nn.Dropout(p=drop_prob)

        self.enc_dec_attention = MultiHeadAttention(d_model=d_model, n_head=n_head)
        self.norm2 = LayerNorm(d_model=d_model)
        self.dropout2 = nn.Dropout(p=drop_prob)

        self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=ffn_hidden, drop_prob=drop_prob)
        self.norm3 = LayerNorm(d_model=d_model)
        self.dropout3 = nn.Dropout(p=drop_prob)

    def forward(self, dec, enc, trg_mask, src_mask):    
        # 1. compute self attention
        _x = dec
        x = self.self_attention(q=dec, k=dec, v=dec, mask=trg_mask)
        
        # 2. add and norm
        x = self.dropout1(x)
        x = self.norm1(x + _x)

        if enc is not None:
            # 3. compute encoder - decoder attention
            _x = x
            x = self.enc_dec_attention(q=x, k=enc, v=enc, mask=src_mask)
            
            # 4. add and norm
            x = self.dropout2(x)
            x = self.norm2(x + _x)

        # 5. positionwise feed forward network
        _x = x
        x = self.ffn(x)
        
        # 6. add and norm
        x = self.dropout3(x)
        x = self.norm3(x + _x)
        return x
class Decoder(nn.Module):
    def __init__(self, dec_voc_size, max_len, d_model, ffn_hidden, n_head, n_layers, drop_prob, device):
        super().__init__()
        self.emb = TransformerEmbedding(d_model=d_model,
                                        drop_prob=drop_prob,
                                        max_len=max_len,
                                        vocab_size=dec_voc_size,
                                        device=device)

        self.layers = nn.ModuleList([DecoderLayer(d_model=d_model,
                                                  ffn_hidden=ffn_hidden,
                                                  n_head=n_head,
                                                  drop_prob=drop_prob)
                                     for _ in range(n_layers)])

        self.linear = nn.Linear(d_model, dec_voc_size)

    def forward(self, trg, src, trg_mask, src_mask):
        trg = self.emb(trg)

        for layer in self.layers:
            trg = layer(trg, src, trg_mask, src_mask)

        # pass to LM head
        output = self.linear(trg)
        return output

ViT & Swin Transformer

注意力&Transformer_第38张图片
注意力&Transformer_第39张图片

  • ViT 与 NLP的不同
    注意力&Transformer_第40张图片
    注意力&Transformer_第41张图片
  • 4 stage的切分,这是在干嘛呢?
    • 感受野在不断的扩大,局部到全局,使Transfomer有层级结构
      注意力&Transformer_第42张图片
      注意力&Transformer_第43张图片

Shifted Window

注意力&Transformer_第44张图片

  • 旋转取代滑动

注意力&Transformer_第45张图片

  • shift + mask 取代 padding + mask
    注意力&Transformer_第46张图片
    注意力&Transformer_第47张图片
    注意力&Transformer_第48张图片
    注意力&Transformer_第49张图片

你可能感兴趣的:(深度学习基础,transformer,深度学习,自然语言处理)