欢迎来到本博客❤️❤️
博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,a半于九十。
本文目录如下:
目录
1 概述
2 运行结果
3 参考文献
4 Matlab代码实现
随着经济快速增长,电力需求急剧增加,这给输配电网带来了巨大的扩容投资压力[1]。电力系统高峰负荷十分集中,要满足尖峰段负荷需求, 就必须加大系统容量建设,这不仅带来了巨大的投资要求,也使得电网现有的设备利用率低下,部分设备只在高峰时段运行。配电网多采用环状结构,开环运行,在配电线路沿馈线设有一定数量的常闭分段开关,馈线之间装有常开的联络开关。配电网重构技术不需增加额外投资,只需调整配电网中的开关状态,就可达到优化运行结构、平衡电力负荷、降低网络损耗、提高 电 压 质 量 的 目 的。理论上,任 何 一 个 配电网都存在一个最优的网络结构,在这个最优结构下,各负荷点的运行电压、网络损耗和负荷平衡的协调均优于其
他可行方案。当负荷变化时,这个最优结构也将变化,因此计算出这个最优结构,以使配电网尽可能地运行在最优状态。
主动配电网进行网络重构的目标有多种,主要包括:降低网络有功损耗,降低系统一定时间段内能量损耗,使线路负载均衡,提高系统供电可靠性,以及提高电压稳定性等。对应的优化目标函数可以用如下数学形式进行表示。
IEEE33节点:
function mpc = IEEE33
%% MATPOWER Case Format : Version 2
mpc.version = '2';
%%----- Power Flow Data -----%%
%% system MVA base
mpc.baseMVA = 10;
%% bus data
% bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin
mpc.bus = [ %% (Pd and Qd are specified in kW & kVAr here, converted to MW & MVAr below)
1 3 0 0 0 0 1 1 0 12.66 1 1 1;
2 1 100 60 0 0 1 1 0 12.66 1 1.1 0.9;
3 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
4 1 120 80 0 0 1 1 0 12.66 1 1.1 0.9;
5 1 60 30 0 0 1 1 0 12.66 1 1.1 0.9;
6 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
7 1 200 100 0 0 1 1 0 12.66 1 1.1 0.9;
8 1 200 100 0 0 1 1 0 12.66 1 1.1 0.9;
9 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
10 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
11 1 45 30 0 0 1 1 0 12.66 1 1.1 0.9;
12 1 60 35 0 0 1 1 0 12.66 1 1.1 0.9;
13 1 60 35 0 0 1 1 0 12.66 1 1.1 0.9;
14 1 120 80 0 0 1 1 0 12.66 1 1.1 0.9;
15 1 60 10 0 0 1 1 0 12.66 1 1.1 0.9;
16 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
17 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
18 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
19 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
20 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
21 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
22 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
23 1 90 50 0 0 1 1 0 12.66 1 1.1 0.9;
24 1 420 200 0 0 1 1 0 12.66 1 1.1 0.9;
25 1 420 200 0 0 1 1 0 12.66 1 1.1 0.9;
26 1 60 25 0 0 1 1 0 12.66 1 1.1 0.9;
27 1 60 25 0 0 1 1 0 12.66 1 1.1 0.9;
28 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
29 1 120 70 0 0 1 1 0 12.66 1 1.1 0.9;
30 1 200 600 0 0 1 1 0 12.66 1 1.1 0.9;
31 1 150 70 0 0 1 1 0 12.66 1 1.1 0.9;
32 1 210 100 0 0 1 1 0 12.66 1 1.1 0.9;
33 1 60 40 0 0 1 1 0 12.66 1 1.1 0.9;
];
%% generator data
% bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin Pc1 Pc2 Qc1min Qc1max Qc2min Qc2max ramp_agc ramp_10 ramp_30 ramp_q apf
mpc.gen = [
1 0 0 10 -10 1 100 1 10 0 0 0 0 0 0 0 0 0 0 0 0;
];
%% branch data
% fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax
mpc.branch = [ %% (r and x specified in ohms here, converted to p.u. below)
1 2 0.0922 0.0470 0 0 0 0 0 0 1 -360 360;
2 3 0.4930 0.2511 0 0 0 0 0 0 1 -360 360;
3 4 0.3660 0.1864 0 0 0 0 0 0 1 -360 360;
4 5 0.3811 0.1941 0 0 0 0 0 0 1 -360 360;
5 6 0.8190 0.7070 0 0 0 0 0 0 1 -360 360;
6 7 0.1872 0.6188 0 0 0 0 0 0 1 -360 360;
7 8 0.7114 0.2351 0 0 0 0 0 0 1 -360 360;
8 9 1.0300 0.7400 0 0 0 0 0 0 1 -360 360;
9 10 1.0440 0.7400 0 0 0 0 0 0 1 -360 360;
10 11 0.1966 0.0650 0 0 0 0 0 0 1 -360 360;
11 12 0.3744 0.1238 0 0 0 0 0 0 1 -360 360;
12 13 1.4680 1.1550 0 0 0 0 0 0 1 -360 360;
13 14 0.5416 0.7129 0 0 0 0 0 0 1 -360 360;
14 15 0.5910 0.5260 0 0 0 0 0 0 1 -360 360;
15 16 0.7463 0.5450 0 0 0 0 0 0 1 -360 360;
16 17 1.2890 1.7210 0 0 0 0 0 0 1 -360 360;
17 18 0.7320 0.5740 0 0 0 0 0 0 1 -360 360;
2 19 0.1640 0.1565 0 0 0 0 0 0 1 -360 360;
19 20 1.5042 1.3554 0 0 0 0 0 0 1 -360 360;
20 21 0.4095 0.4784 0 0 0 0 0 0 1 -360 360;
21 22 0.7089 0.9373 0 0 0 0 0 0 1 -360 360;
3 23 0.4512 0.3083 0 0 0 0 0 0 1 -360 360;
23 24 0.8980 0.7091 0 0 0 0 0 0 1 -360 360;
24 25 0.8960 0.7011 0 0 0 0 0 0 1 -360 360;
6 26 0.2030 0.1034 0 0 0 0 0 0 1 -360 360;
26 27 0.2842 0.1447 0 0 0 0 0 0 1 -360 360;
27 28 1.0590 0.9337 0 0 0 0 0 0 1 -360 360;
28 29 0.8042 0.7006 0 0 0 0 0 0 1 -360 360;
29 30 0.5075 0.2585 0 0 0 0 0 0 1 -360 360;
30 31 0.9744 0.9630 0 0 0 0 0 0 1 -360 360;
31 32 0.3105 0.3619 0 0 0 0 0 0 1 -360 360;
32 33 0.3410 0.5302 0 0 0 0 0 0 1 -360 360;
21 8 2.0000 2.0000 0 0 0 0 0 0 0 -360 360;
9 15 2.0000 2.0000 0 0 0 0 0 0 0 -360 360;
12 22 2.0000 2.0000 0 0 0 0 0 0 0 -360 360;
18 33 0.5000 0.5000 0 0 0 0 0 0 0 -360 360;
25 29 0.5000 0.5000 0 0 0 0 0 0 0 -360 360;
];
%%----- OPF Data -----%%
%% generator cost data
% 1 startup shutdown n x1 y1 ... xn yn
% 2 startup shutdown n c(n-1) ... c0
mpc.gencost = [
2 0 0 3 0 20 0;
];
%% convert branch impedances from Ohms to p.u.
[PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ...
VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;
[F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, RATE_C, ...
TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST, ...
ANGMIN, ANGMAX, MU_ANGMIN, MU_ANGMAX] = idx_brch;
Vbase = mpc.bus(1, BASE_KV) * 1e3; %% in Volts
Sbase = mpc.baseMVA * 1e6; %% in VA
mpc.branch(:, [BR_R BR_X]) = mpc.branch(:, [BR_R BR_X]) / (Vbase^2 / Sbase);
%% convert loads from kW to MW
mpc.bus(:, [PD, QD]) = mpc.bus(:, [PD, QD]) / 1e3;
function mpc = IEEE33
%% MATPOWER Case Format : Version 2
mpc.version = '2';%%----- Power Flow Data -----%%
%% system MVA base
mpc.baseMVA = 10;%% bus data
% bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin
mpc.bus = [ %% (Pd and Qd are specified in kW & kVAr here, converted to MW & MVAr below)
1 3 0 0 0 0 1 1 0 12.66 1 1 1;
2 1 100 60 0 0 1 1 0 12.66 1 1.1 0.9;
3 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
4 1 120 80 0 0 1 1 0 12.66 1 1.1 0.9;
5 1 60 30 0 0 1 1 0 12.66 1 1.1 0.9;
6 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
7 1 200 100 0 0 1 1 0 12.66 1 1.1 0.9;
8 1 200 100 0 0 1 1 0 12.66 1 1.1 0.9;
9 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
10 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
11 1 45 30 0 0 1 1 0 12.66 1 1.1 0.9;
12 1 60 35 0 0 1 1 0 12.66 1 1.1 0.9;
13 1 60 35 0 0 1 1 0 12.66 1 1.1 0.9;
14 1 120 80 0 0 1 1 0 12.66 1 1.1 0.9;
15 1 60 10 0 0 1 1 0 12.66 1 1.1 0.9;
16 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
17 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
18 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
19 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
20 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
21 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
22 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9;
23 1 90 50 0 0 1 1 0 12.66 1 1.1 0.9;
24 1 420 200 0 0 1 1 0 12.66 1 1.1 0.9;
25 1 420 200 0 0 1 1 0 12.66 1 1.1 0.9;
26 1 60 25 0 0 1 1 0 12.66 1 1.1 0.9;
27 1 60 25 0 0 1 1 0 12.66 1 1.1 0.9;
28 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9;
29 1 120 70 0 0 1 1 0 12.66 1 1.1 0.9;
30 1 200 600 0 0 1 1 0 12.66 1 1.1 0.9;
31 1 150 70 0 0 1 1 0 12.66 1 1.1 0.9;
32 1 210 100 0 0 1 1 0 12.66 1 1.1 0.9;
33 1 60 40 0 0 1 1 0 12.66 1 1.1 0.9;
];
部分理论来源于网络,如有侵权请联系删除。
[1]朱俊澎. 主动配电网重构与孤岛划分研究[D].东南大学,2018.
[2]葛鹏江,张树永,董晓晶,靳盘龙.基于鲁棒优化的配网重构二阶锥规划模型[J].电力科学与技术学报,2018,33(04):50-57.
[3]荣德生,胡举爽.配电网重构的凸模型[J].电源学报,2016,14(03):131-136.DOI:10.13234/j.issn.2095-2805.2016.3.131.
[4]向佳霓,赵建立,顾霈,王隗东,陈珂,张洪志.考虑需求响应的配电网重构经济性和可靠性研究[J].电工技术,2022(19):20-23.DOI:10.19768/j.cnki.dgjs.2022.19.006.