大模型(LLM)总结

大模型(大型语言模型,LLMs)是当下AI和NLP研究与产业中最重要的方向之一。

本文将对当下的主流大模型进行总结。(*更新于2023.03.19)

本文将参数规模在1B以上的模型视为大模型。

模型一览

Model 作者 Size 类型 开源?
LLaMa Meta AI 7B-65B Decoder open
OPT Meta AI 125M-175B Decoder open
T5 Google 220M-11B Encoder-Decoder open
mT5 Google 235M-13B Encoder-Decoder open
UL2 Google 20B Encoder-Decoder open
PaLM Google 540B Decoder no
LaMDA Google 2B-137B Decoder no
FLAN-T5 Google 同T5 Encoder-Decoder open
FLAN-UL2 Google 同U2 Encoder-Decoder open
FLAN-PaLM Google 同PaLM Decoder no
FLAN Google 同LaMDA Decoder no
BLOOM BigScience 176B Decoder open
T0 BigScience 3B Decoder open
BLOOMZ BigScience 同BLOOM Decoder open
mT0 BigScience 同T0 Decoder open
GPT-Neo EleutherAI 125M-2.7B Decoder open
GPT-NeoX EleutherAI 20B Decoder open
GPT3 OpenAI 175B (davinci) Decoder no
GPT4 OpenAI unknown OpenAI no
InstructGPT OpenAI 1.3B Decoder no
Alpaca Stanford 同LLaMa Decoder open

Meta/Facebook AI

  • LLaMA: Open and Efficient Foundation Language Models

https://arxiv.org/pdf/2302.13971v1.pdf​arxiv.org/pdf/2302.13971v1.pdf

https://github.com/facebookresearch/llama​github.com/facebookresearch/llama

  • OPT: Open Pre-trained Transformer Language Models

https://arxiv.org/pdf/2205.01068.pdf​arxiv.org/pdf/2205.01068.pdf

GitHub - facebookresearch/metaseq: Repo for external large-scale work​github.com/facebookresearch/metaseq正在上传…重新上传取消

Google

  • T5: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

https://arxiv.org/pdf/1910.10683.pdf​arxiv.org/pdf/1910.10683.pdf

https://github.com/google-research/text-to-text-transfer-transformer​github.com/google-research/text-to-text-transfer-transformer

注:T5的代码和模型同样open source在hugging face平台。

google (Google AI)​huggingface.co/google?sort_models=likes#models正在上传…重新上传取消

  • mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer

https://arxiv.org/pdf/2010.11934.pdf​arxiv.org/pdf/2010.11934.pdf

https://huggingface.co/models?search=mt5​huggingface.co/models?search=mt5

  • UL2 and Flan-UL2: Unifying Language Learning Paradigms

https://arxiv.org/pdf/2205.05131.pdf​arxiv.org/pdf/2205.05131.pdf

blog:

https://www.yitay.net/blog/flan-ul2-20b​www.yitay.net/blog/flan-ul2-20b

model:

google/ul2 · Hugging Face​huggingface.co/google/ul2正在上传…重新上传取消

google/flan-ul2 · Hugging Face​huggingface.co/google/flan-ul2正在上传…重新上传取消

  • PaLM: Scaling Language Modeling with Pathways

https://arxiv.org/pdf/2204.02311.pdf​arxiv.org/pdf/2204.02311.pdf

  • LaMDA: Language Models for Dialog Applications

https://arxiv.org/pdf/2201.08239.pdf​arxiv.org/pdf/2201.08239.pdf

blog:

https://blog.google/technology/ai/lamda/​blog.google/technology/ai/lamda/

  • Flan-T5 and Flan-PaLM: Scaling Instruction-Finetuned Language Models

https://arxiv.org/pdf/2210.11416.pdf​arxiv.org/pdf/2210.11416.pdf

google/flan-t5-large · Hugging Face​huggingface.co/google/flan-t5-large正在上传…重新上传取消

  • Flan: FINETUNED LANGUAGE MODELS ARE ZERO-SHOT LEARNERS

https://arxiv.org/pdf/2109.01652.pdf​arxiv.org/pdf/2109.01652.pdf

**注释:在谷歌的命名体系中,前缀Flan基本等于该模型经过了instruct-tuning。

BigScience (非盈利兴趣组织)

  • BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

https://arxiv.org/pdf/2211.05100.pdf​arxiv.org/pdf/2211.05100.pdf

bigscience/bloom · Hugging Face​huggingface.co/bigscience/bloom正在上传…重新上传取消

  • T0: MULTITASK PROMPTED TRAINING ENABLES ZERO-SHOT TASK GENERALIZATION

https://arxiv.org/pdf/2110.08207.pdf​arxiv.org/pdf/2110.08207.pdf

https://huggingface.co/bigscience/T0​huggingface.co/bigscience/T0

  • BLOOMZ and mT0: Multilingual version of BLOOM and T0

https://arxiv.org/pdf/2211.01786.pdf​arxiv.org/pdf/2211.01786.pdf

EleutherAI

  • GPT-NEO

https://github.com/EleutherAI/gpt-neo​github.com/EleutherAI/gpt-neo

  • GPT-NeoX

https://arxiv.org/pdf/2204.06745.pdf​arxiv.org/pdf/2204.06745.pdf

https://huggingface.co/EleutherAI/gpt-neox-20b​huggingface.co/EleutherAI/gpt-neox-20b

OpenAI

OpenAI的大模型自GPT3起都没有开源,关于OpenAI GPT 系列模型的API参见:

九号:OpenAI API 所有 GPT Models 详解47 赞同 · 0 评论文章

Stanford

Alpaca,LLaMA的指令微调模型,效果达到GPT-3.5水平。

https://github.com/tatsu-lab/stanford_alpaca​github.com/tatsu-lab/stanford_alpaca

最新:Prompt/Instruct Tuning 开源数据总结

九号:总结开源可用的Instruct/Prompt Tuning数据440 赞同 · 4 评论文章

**如有本文未提到的大模型,欢迎读者评论区留言。

你可能感兴趣的:(人工智能)