Python | 人脸识别系统 — 活体检测

本博客为人脸识别系统的活体检测代码解释

人脸识别系统博客汇总:人脸识别系统-博客索引

项目GitHub地址:Su-Face-Recognition: A face recognition for user logining

注意:阅读本博客前请先参考以下博客

工具安装、环境配置:人脸识别系统-简介

UI界面设计:人脸识别系统-UI界面设计

UI事件处理:人脸识别系统-UI事件处理

摄像头画面展示:人脸识别系统-摄像头画面展示

阅读完本博客后可以继续阅读:

用户端逻辑:

  • 人脸识别:Python | 人脸识别系统 — 人脸识别
  • 背景模糊:Python | 人脸识别系统 — 背景模糊
  • 姿态检测:Python | 人脸识别系统 — 姿态检测
  • 人脸比对:Python | 人脸识别系统 — 人脸比对
  • 用户操作:Python | 人脸识别系统 — 用户操作

管理员端逻辑:

  • 管理员操作:
  • 用户操作:

一、基本思路

代码使用 静默活体检测+交互活体检测 结合判断。

        静默活体检测使用百度API,通过接口返回的置信度,判断是否通过。

        交互活体检测通过要求用户完成一定动作,判断是否通过。

二、初始化

        初始化 isFaceRecognition_flag 标志判断当前人脸识别状态。

        按钮绑定人脸识别判断器 recognize_face_judge 方法。

        其余属性会在后面讲到。

    def __init__(self, parent=None):
        super(UserMainWindow, self).__init__(parent)
        self.setupUi(self)

        self.isFaceDetection_flag = False  # 是否打开活体检测标志
        self.biopsy_testing_button.clicked.connect(self.detect_face_judge)  # 活体检测

        self.detector = None  # 人脸检测器
        self.predictor = None  # 特征点检测器
        # 闪烁阈值
        self.EAR_THRESH = None
        self.MOUTH_THRESH = None
        # 总闪烁次数
        self.eye_flash_counter = None
        self.mouth_open_counter = None
        self.turn_left_counter = None
        self.turn_right_counter = None
        # 连续帧数阈值
        self.EAR_CONSTANT_FRAMES = None
        self.MOUTH_CONSTANT_FRAMES = None
        self.LEFT_CONSTANT_FRAMES = None
        self.RIGHT_CONSTANT_FRAMES = None
        # 连续帧计数器
        self.eye_flash_continuous_frame = 0
        self.mouth_open_continuous_frame = 0
        self.turn_left_continuous_frame = 0
        self.turn_right_continuous_frame = 0
        # 字体颜色
        self.text_color = (255, 0, 0)
        # 百度API
        self.api = BaiduApiUtil

三、判断器

    # 活体检测判断器
    def detect_face_judge(self):
        if not self.cap.isOpened():
            QMessageBox.information(self, "提示", self.tr("请先打开摄像头"))
        else:
            if not self.isFaceDetection_flag:
                self.isFaceDetection_flag = True
                self.biopsy_testing_button.setText("关闭活体检测")
                self.detect_face()
                self.biopsy_testing_button.setText("活体检测")
                self.isFaceDetection_flag = False
            elif self.isFaceDetection_flag:
                self.isFaceDetection_flag = False
                self.remind_label.setText("")
                self.biopsy_testing_button.setText("活体检测")
                self.show_camera()

四、检测器

        首先判断当前环境是否联网(联网检测代码在BaiduApiUtil工具类中,工具类的代码在下面),联网进行静默活体检测+交互活体检测(联网检测),否则进行单独的交互活体检测(本地检测)。

    # 百度API
    self.api = BaiduApiUtil

    ... ...

    # 整体活体检测
    def detect_face(self):
        if self.api.network_connect_judge():
            if not self.detect_face_network():
                return False
        if not self.detect_face_local():
            return False
        return True


    # 联网活体检测
    def detect_face_network(self):
        ... ... 


    # 本地活体检测
    def detect_face_local(self):
        ... ...

1、静默活体检测

        静默活体检测用到了百度智能云接口,我们创建一个工具类 BaiduApiUtil,在工具类中编写网络连接、请求、解析结果等的代码。然后在用户界面逻辑代码中进行使用。

接口详情请参考 百度智能云-接口详情

代码示例请参考 百度智能云-代码示例

注意:使用前需要注册百度智能云账号,申请接口(接口免费),获取自己的API_KEY以及SECRET_KEY

        (1)工具类 BaiduApiUtil

                 a.联网判断

def network_connect_judge():
    """
    联网判断
    :return: 是否联网
    """
    ret = os.system("ping baidu.com -n 1")
    return True if ret == 0 else False

               b. 获取访问令牌

将申请百度接口的API_KEY等参数保存到.conf配置文件中(配置文件在当前项目的conf目录下),然后在使用ConfigParser读取并使用。

[baidu_config]
app_id = XXXXXXXXXXXXXXXXXXXXXXXX
secret_key = XXXXXXXXXXXXXXXXXXXXXXXX
def get_access_token():
    """
    获取访问令牌
    :return: 访问令牌
    """
    conf = ConfigParser()
    path = os.path.join(os.path.dirname(__file__))
    conf.read(path[:path.rindex('util')] + "conf\\setting.conf", encoding='gbk')

    API_KEY = conf.get('baidu_config', 'app_id')
    SECRET_KEY = conf.get('baidu_config', 'secret_key')

    url = "https://aip.baidubce.com/oauth/2.0/token"
    params = {"grant_type": "client_credentials", "client_id": API_KEY, "client_secret": SECRET_KEY}
    return str(requests.post(url, params=params).json().get("access_token"))

                c.接口调用

注意:进行API请求时,上传的图片格式为base64格式,我们传入的图片为jpg格式,故需要进行格式转换。通过base64.b64encode()方法进行转换

def face_api_invoke(path):
    """
    人脸 API 调用
    :param path: 待检测的图片路径
    :return: 是否通过静默人脸识别
    """
    with open(path, 'rb') as f:
        img_data = f.read()
        base64_data = base64.b64encode(img_data)
        base64_str = base64_data.decode('utf-8')
    url = "https://aip.baidubce.com/rest/2.0/face/v3/faceverify?access_token=" + get_access_token()
    headers = {'Content-Type': 'application/json'}
    payload = json.dumps(([{
        "image": base64_str,
        "image_type": "BASE64"
    }]))
    response = requests.request("POST", url, headers=headers, data=payload)
    print(response)
    result = json.loads(response.text)
    if result["error_msg"] == "SUCCESS":
        frr_1e_4 = result["result"]["thresholds"]["frr_1e-4"]
        frr_1e_3 = result["result"]["thresholds"]["frr_1e-3"]
        frr_1e_2 = result["result"]["thresholds"]["frr_1e-2"]
        face_liveness = result["result"]["face_liveness"]

        if face_liveness >= frr_1e_2:
            return True
        elif frr_1e_3 <= face_liveness <= frr_1e_2:
            return True
        elif face_liveness <= frr_1e_4:
            return False

         (2)用户主界面逻辑调用

    # 文件目录
    curPath = os.path.abspath(os.path.dirname(__file__))
    # 项目根路径
    rootPath = curPath[:curPath.rindex('logic')] # logic为存放用户界面逻辑代码的文件夹名
    # 配置文件夹路径
    CONF_FOLDER_PATH = rootPath + 'conf\\'
    # 图片文件夹路径
    PHOTO_FOLDER_PATH = rootPath + 'photo\\'
    # 数据文件夹路径
    DATA_FOLDER_PATH = rootPath + 'data\\'

    ... ...

    # 联网活体检测
    def detect_face_network(self):
        while self.cap.isOpened():
            ret, frame = self.cap.read()
            frame_location = face_recognition.face_locations(frame)
            if len(frame_location) == 0:
                QApplication.processEvents()
                self.remind_label.setText("未检测到人脸")
            else:
                global PHOTO_FOLDER_PATH
                shot_path = PHOTO_FOLDER_PATH + datetime.now().strftime("%Y%m%d%H%M%S") + ".jpg"
                self.show_image.save(shot_path)
                QApplication.processEvents()
                self.remind_label.setText("正在初始化\n请稍后")
                # 百度API进行活体检测
                QApplication.processEvents()
                if not self.api.face_api_invoke(shot_path):
                    os.remove(shot_path)
                    QMessageBox.about(self, '警告', '未通过活体检测')
                    self.remind_label.setText("")
                    return False
                else:
                    os.remove(shot_path)
                    return True

            show_video = cv2.cvtColor(cv2.resize(frame, (self.WIN_WIDTH, self.WIN_HEIGHT)), cv2.COLOR_BGR2RGB)
            self.show_image = QImage(show_video.data, show_video.shape[1], show_video.shape[0], QImage.Format_RGB888)
            self.camera_label.setPixmap(QPixmap.fromImage(self.show_image))

2、交互活体检测

        (1)基本原理

        采用开源框架dlib的shape_predictor_68_face_landmarks模型,对人脸的68个特征点进行检测定位。本系统活体检测主要检测人脸左摇头、右摇头、眨眼、张嘴、点头等多个动作,故需要鼻子[32,36]、左眼[37,42]、右眼[43,48]、上嘴唇内边缘[66,68]等多个部分的特征点集合。

Python | 人脸识别系统 — 活体检测_第1张图片

        眨眼检测的基本原理是计算眼睛长宽比EAR(Eye Aspect Ratio)值。当人眼睁开时,EAR在某个值上下波动。当人眼闭合时,EAR将迅速下降,理论上接近于零,实际上一般波动于0.25上下,故本系统设置阈值在0.25。

        EAR的计算公式如下:

                 其中,p1~p5为当前眼睛的6个标记点,图示如下:

        (2)实现原理

        不断读取摄像头传回的每一帧,对该帧的EAR值进行计算。当EAR低于阈值时,自动将当前帧计数加一。当帧连续计数超过2帧后,EAR值大于阈值,则将该次动作视为一次眨眼

        同理,对张嘴、左摇头、右摇头的处理也是类似的。首先通过dlib获取当前器官的标记点,计算其长宽比,与系统预先指定的阈值进行比较。当长宽比小于阈值时,连续帧计数器自动加一。当连续帧计数器值超过指定值时,判断本次动作为一次有效的动作,进行记录。

        由于需要用户进行各种动作的完成,纸质或者电子照片基本上无法再通过本次活体检测。

        但对于视频,攻击者有可能使用预先录制的完成一定顺序动作的视频,以此欺骗系统。对于该情况,本团队的应对措施如下:

        系统需要用户完成左摇头、右摇头、眨眼、张嘴动作,其中张嘴以及眨眼指定的次数为指定数目。系统对上述动作进行随机打乱,并且张嘴以及眨眼指定的次数也为随机数。

        通过以上方式,用户在进行每一次的交互活体检测时,需要完成的方案都是完全不相同的,且完成的张嘴、眨眼次数也是不同的。当用户超过系统的指定时间未完成检测,则自动判断为活体检测失效。当用户超过3次进行登录的活体检测失败,系统将判断当前用户存在风险,并锁死当前登录的用户。被锁死的用户需要经过管理员通过管理员系统方可以解除锁定。

        通过以上的方式,对视频的欺骗攻击,本系统也有能力进行抵御阻挡。

        (3)代码详解

        a.初始化

        需要初始化的参数包括:特征点检测器 self.predictor、self.detector、闪烁阈值、总闪烁次数、连续帧数阈值、连续帧计数器、当前总帧数、检测随机值、面部特征点索引。

        特征点检测器:通过dlib的shape_predictor_68_face_landmarks模型,对人脸的68个特征点进行检测定位,首先需要进行模型的加载。由于模型加载时间较长,设置逻辑判断。当不是第一次使用活体检测时,使用已经加载好的属性,提高初始化时间。

        面部特征点索引:当前用户面部特征点的索引序号

        闪烁阈值、连续帧计数器:设置眨眼、张嘴的EAR、MAR阈值,当前帧用户的动作超过阈值时连续帧计数器加一。

       连续帧数阈值:当帧连续计数超过阈值设置的帧数后,EAR值大于阈值,则将该次动作视为一次眨眼或张嘴动作。

       总闪烁次数:用户需要完成的动作的次数。

       当前总帧数:从开始到当前时间 活体检测的帧数,超过系统指定帧数时则判断活体检测失败。

       检测随机值:包括随机次数的眨眼、张嘴次数,以及随机的动作集合,如(右转头-眨眼-张嘴-左转头)、(右转头-眨眼-左转头-张嘴)、(眨眼-张嘴-右转头-左转头)等

项目结构如下:

Python | 人脸识别系统 — 活体检测_第2张图片

 其中 shape_predictor_68_face_landmarks.dat 文件在项目的data目录下。

# 本地活体检测
    def detect_face_local(self):
        self.detect_start_time = time()

        QApplication.processEvents()
        self.remind_label.setText("正在初始化\n请稍后")
        # 特征点检测器首次加载比较慢,通过判断减少后面加载的速度
        if self.detector is None:
            self.detector = dlib.get_frontal_face_detector()
        if self.predictor is None:
            self.predictor = dlib.shape_predictor('../data/shape_predictor_68_face_landmarks.dat')

        # 闪烁阈值
        self.EAR_THRESH = 0.25
        self.MOUTH_THRESH = 0.7

        # 总闪烁次数
        self.eye_flash_counter = 0
        self.mouth_open_counter = 0
        self.turn_left_counter = 0
        self.turn_right_counter = 0

        # 连续帧数阈值
        self.EAR_CONSTANT_FRAMES = 2
        self.MOUTH_CONSTANT_FRAMES = 2
        self.LEFT_CONSTANT_FRAMES = 4
        self.RIGHT_CONSTANT_FRAMES = 4

        # 连续帧计数器
        self.eye_flash_continuous_frame = 0
        self.mouth_open_continuous_frame = 0
        self.turn_left_continuous_frame = 0
        self.turn_right_continuous_frame = 0

        print("活体检测 初始化时间:", time() - self.detect_start_time)

        # 当前总帧数
        total_frame_counter = 0

        # 设置随机值
        now_flag = 0
        random_type = [0, 1, 2, 3]
        random.shuffle(random_type)

        random_eye_flash_number = random.randint(4, 6)
        random_mouth_open_number = random.randint(2, 4)
        QMessageBox.about(self, '提示', '请按照指示执行相关动作')
        self.remind_label.setText("")

        # 抓取面部特征点的索引
        (lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
        (rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
        (mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]

              b.EAR、MAR等值的计算

                以眼睛为例,获取眼睛的,套用计算EAR值的公式,计算得到EAR值。

    # 计算眼长宽比例 EAR值
    @staticmethod
    def count_EAR(eye):
        A = dist.euclidean(eye[1], eye[5])
        B = dist.euclidean(eye[2], eye[4])
        C = dist.euclidean(eye[0], eye[3])
        EAR = (A + B) / (2.0 * C)
        return EAR

    # 计算嘴长宽比例 MAR值
    @staticmethod
    def count_MAR(mouth):
        A = dist.euclidean(mouth[1], mouth[11])
        B = dist.euclidean(mouth[2], mouth[10])
        C = dist.euclidean(mouth[3], mouth[9])
        D = dist.euclidean(mouth[4], mouth[8])
        E = dist.euclidean(mouth[5], mouth[7])
        F = dist.euclidean(mouth[0], mouth[6])  # 水平欧几里德距离
        ratio = (A + B + C + D + E) / (5.0 * F)
        return ratio

    # 计算左右脸转动比例 FR值
    @staticmethod
    def count_FR(face):
        rightA = dist.euclidean(face[0], face[27])
        rightB = dist.euclidean(face[2], face[30])
        rightC = dist.euclidean(face[4], face[48])
        leftA = dist.euclidean(face[16], face[27])
        leftB = dist.euclidean(face[14], face[30])
        leftC = dist.euclidean(face[12], face[54])
        ratioA = rightA / leftA
        ratioB = rightB / leftB
        ratioC = rightC / leftC
        ratio = (ratioA + ratioB + ratioC) / 3
        return ratio

        c.用户动作判断

    def check_eye_flash(self, average_EAR):
        if average_EAR < self.EAR_THRESH:
            self.eye_flash_continuous_frame += 1
        else:
            if self.eye_flash_continuous_frame >= self.EAR_CONSTANT_FRAMES:
                self.eye_flash_counter += 1
            self.eye_flash_continuous_frame = 0

    def check_mouth_open(self, mouth_MAR):
        if mouth_MAR > self.MOUTH_THRESH:
            self.mouth_open_continuous_frame += 1
        else:
            if self.mouth_open_continuous_frame >= self.MOUTH_CONSTANT_FRAMES:
                self.mouth_open_counter += 1
            self.mouth_open_continuous_frame = 0

    def check_right_turn(self, leftRight_FR):
        if leftRight_FR <= 0.5:
            self.turn_right_continuous_frame += 1
        else:
            if self.turn_right_continuous_frame >= self.RIGHT_CONSTANT_FRAMES:
                self.turn_right_counter += 1
            self.turn_right_continuous_frame = 0

    def check_left_turn(self, leftRight_FR):
        if leftRight_FR >= 2.0:
            self.turn_left_continuous_frame += 1
        else:
            if self.turn_left_continuous_frame >= self.LEFT_CONSTANT_FRAMES:
                self.turn_left_counter += 1
            self.turn_left_continuous_frame = 0

        d.活体检测判断

        当摄像头打开时,进行活体检测判断。当用户 活体检测成功 或者 超时 时才退出循环。

        while self.cap.isOpened():
            ret, frame = self.cap.read()
            total_frame_counter += 1
            frame = imutils.resize(frame)
            gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            rects = self.detector(gray, 0)

            if len(rects) == 1:
                QApplication.processEvents()
                shape = self.predictor(gray, rects[0])
                shape = face_utils.shape_to_np(shape)

                # 提取面部坐标
                left_eye = shape[lStart:lEnd]
                right_eye = shape[rStart:rEnd]
                mouth = shape[mStart:mEnd]

                # 计算长宽比
                left_EAR = self.count_EAR(left_eye)
                right_EAR = self.count_EAR(right_eye)
                mouth_MAR = self.count_MAR(mouth)
                leftRight_FR = self.count_FR(shape)
                average_EAR = (left_EAR + right_EAR) / 2.0

                # 计算左眼、右眼、嘴巴的凸包
                left_eye_hull = cv2.convexHull(left_eye)
                right_eye_hull = cv2.convexHull(right_eye)
                mouth_hull = cv2.convexHull(mouth)

                # 可视化
                cv2.drawContours(frame, [left_eye_hull], -1, (0, 255, 0), 1)
                cv2.drawContours(frame, [right_eye_hull], -1, (0, 255, 0), 1)
                cv2.drawContours(frame, [mouth_hull], -1, (0, 255, 0), 1)

                if now_flag >= 4:
                    self.remind_label.setText("")
                    QMessageBox.about(self, '提示', '已通过活体检测')
                    self.turn_right_counter = 0
                    self.mouth_open_counter = 0
                    self.eye_flash_counter = 0
                    return True

                if random_type[now_flag] == 0:
                    if self.turn_left_counter > 0:
                        now_flag += 1
                    else:
                        self.remind_label.setText("请向左摇头")
                        self.check_left_turn(leftRight_FR)
                        self.turn_right_counter = 0
                        self.mouth_open_counter = 0
                        self.eye_flash_counter = 0

                elif random_type[now_flag] == 1:
                    if self.turn_right_counter > 0:
                        now_flag += 1
                    else:
                        self.remind_label.setText("请向右摇头")
                        self.check_right_turn(leftRight_FR)
                        self.turn_left_counter = 0
                        self.mouth_open_counter = 0
                        self.eye_flash_counter = 0

                elif random_type[now_flag] == 2:
                    if self.mouth_open_counter >= random_mouth_open_number:
                        now_flag += 1

                    else:
                        self.remind_label.setText("已张嘴{}次\n还需张嘴{}次".format(self.mouth_open_counter, (
                                random_mouth_open_number - self.mouth_open_counter)))
                        self.check_mouth_open(mouth_MAR)
                        self.turn_right_counter = 0
                        self.turn_left_counter = 0
                        self.eye_flash_counter = 0

                elif random_type[now_flag] == 3:
                    if self.eye_flash_counter >= random_eye_flash_number:
                        now_flag += 1
                    else:
                        self.remind_label.setText("已眨眼{}次\n还需眨眼{}次".format(self.eye_flash_counter, (
                                random_eye_flash_number - self.eye_flash_counter)))
                        self.check_eye_flash(average_EAR)
                        self.turn_right_counter = 0
                        self.turn_left_counter = 0
                        self.mouth_open_counter = 0

            elif len(rects) == 0:
                QApplication.processEvents()
                self.remind_label.setText("没有检测到人脸!")

            elif len(rects) > 1:
                QApplication.processEvents()
                self.remind_label.setText("检测到超过一张人脸!")

            show_video = cv2.cvtColor(cv2.resize(frame, (self.WIN_WIDTH, self.WIN_HEIGHT)), cv2.COLOR_BGR2RGB)
            self.show_image = QImage(show_video.data, show_video.shape[1], show_video.shape[0], QImage.Format_RGB888)
            self.camera_label.setPixmap(QPixmap.fromImage(self.show_image))

            if total_frame_counter >= 1000.0:
                QMessageBox.about(self, '警告', '已超时,未通过活体检测')
                self.remind_label.setText("")
                return False

        (4)全部代码

    # 计算眼长宽比例 EAR值
    @staticmethod
    def count_EAR(eye):
        A = dist.euclidean(eye[1], eye[5])
        B = dist.euclidean(eye[2], eye[4])
        C = dist.euclidean(eye[0], eye[3])
        EAR = (A + B) / (2.0 * C)
        return EAR

    # 计算嘴长宽比例 MAR值
    @staticmethod
    def count_MAR(mouth):
        A = dist.euclidean(mouth[1], mouth[11])
        B = dist.euclidean(mouth[2], mouth[10])
        C = dist.euclidean(mouth[3], mouth[9])
        D = dist.euclidean(mouth[4], mouth[8])
        E = dist.euclidean(mouth[5], mouth[7])
        F = dist.euclidean(mouth[0], mouth[6])  # 水平欧几里德距离
        ratio = (A + B + C + D + E) / (5.0 * F)
        return ratio

    # 计算左右脸转动比例 FR值
    @staticmethod
    def count_FR(face):
        rightA = dist.euclidean(face[0], face[27])
        rightB = dist.euclidean(face[2], face[30])
        rightC = dist.euclidean(face[4], face[48])
        leftA = dist.euclidean(face[16], face[27])
        leftB = dist.euclidean(face[14], face[30])
        leftC = dist.euclidean(face[12], face[54])
        ratioA = rightA / leftA
        ratioB = rightB / leftB
        ratioC = rightC / leftC
        ratio = (ratioA + ratioB + ratioC) / 3
        return ratio

    # 本地活体检测
    def detect_face_local(self):
        self.detect_start_time = time()

        QApplication.processEvents()
        self.remind_label.setText("正在初始化\n请稍后")
        # 特征点检测器首次加载比较慢,通过判断减少后面加载的速度
        if self.detector is None:
            self.detector = dlib.get_frontal_face_detector()
        if self.predictor is None:
            global DATA_FOLDER_PATH
            self.predictor = dlib.shape_predictor('../data/shape_predictor_68_face_landmarks.dat')

        # 闪烁阈值
        self.EAR_THRESH = 0.25
        self.MOUTH_THRESH = 0.7

        # 总闪烁次数
        self.eye_flash_counter = 0
        self.mouth_open_counter = 0
        self.turn_left_counter = 0
        self.turn_right_counter = 0

        # 连续帧数阈值
        self.EAR_CONSTANT_FRAMES = 2
        self.MOUTH_CONSTANT_FRAMES = 2
        self.LEFT_CONSTANT_FRAMES = 4
        self.RIGHT_CONSTANT_FRAMES = 4

        # 连续帧计数器
        self.eye_flash_continuous_frame = 0
        self.mouth_open_continuous_frame = 0
        self.turn_left_continuous_frame = 0
        self.turn_right_continuous_frame = 0

        print("活体检测 初始化时间:", time() - self.detect_start_time)

        # 当前总帧数
        total_frame_counter = 0

        # 设置随机值
        now_flag = 0
        random_type = [0, 1, 2, 3]
        random.shuffle(random_type)

        random_eye_flash_number = random.randint(4, 6)
        random_mouth_open_number = random.randint(2, 4)
        QMessageBox.about(self, '提示', '请按照指示执行相关动作')
        self.remind_label.setText("")

        # 抓取面部特征点的索引
        (lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
        (rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
        (mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]

        while self.cap.isOpened():
            ret, frame = self.cap.read()
            total_frame_counter += 1
            frame = imutils.resize(frame)
            gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            rects = self.detector(gray, 0)

            if len(rects) == 1:
                QApplication.processEvents()
                shape = self.predictor(gray, rects[0])
                shape = face_utils.shape_to_np(shape)

                # 提取面部坐标
                left_eye = shape[lStart:lEnd]
                right_eye = shape[rStart:rEnd]
                mouth = shape[mStart:mEnd]

                # 计算长宽比
                left_EAR = self.count_EAR(left_eye)
                right_EAR = self.count_EAR(right_eye)
                mouth_MAR = self.count_MAR(mouth)
                leftRight_FR = self.count_FR(shape)
                average_EAR = (left_EAR + right_EAR) / 2.0

                # 计算左眼、右眼、嘴巴的凸包
                left_eye_hull = cv2.convexHull(left_eye)
                right_eye_hull = cv2.convexHull(right_eye)
                mouth_hull = cv2.convexHull(mouth)

                # 可视化
                cv2.drawContours(frame, [left_eye_hull], -1, (0, 255, 0), 1)
                cv2.drawContours(frame, [right_eye_hull], -1, (0, 255, 0), 1)
                cv2.drawContours(frame, [mouth_hull], -1, (0, 255, 0), 1)

                if now_flag >= 4:
                    self.remind_label.setText("")
                    QMessageBox.about(self, '提示', '已通过活体检测')
                    self.turn_right_counter = 0
                    self.mouth_open_counter = 0
                    self.eye_flash_counter = 0
                    return True

                if random_type[now_flag] == 0:
                    if self.turn_left_counter > 0:
                        now_flag += 1
                    else:
                        self.remind_label.setText("请向左摇头")
                        self.check_left_turn(leftRight_FR)
                        self.turn_right_counter = 0
                        self.mouth_open_counter = 0
                        self.eye_flash_counter = 0

                elif random_type[now_flag] == 1:
                    if self.turn_right_counter > 0:
                        now_flag += 1
                    else:
                        self.remind_label.setText("请向右摇头")
                        self.check_right_turn(leftRight_FR)
                        self.turn_left_counter = 0
                        self.mouth_open_counter = 0
                        self.eye_flash_counter = 0

                elif random_type[now_flag] == 2:
                    if self.mouth_open_counter >= random_mouth_open_number:
                        now_flag += 1

                    else:
                        self.remind_label.setText("已张嘴{}次\n还需张嘴{}次".format(self.mouth_open_counter, (
                                random_mouth_open_number - self.mouth_open_counter)))
                        self.check_mouth_open(mouth_MAR)
                        self.turn_right_counter = 0
                        self.turn_left_counter = 0
                        self.eye_flash_counter = 0

                elif random_type[now_flag] == 3:
                    if self.eye_flash_counter >= random_eye_flash_number:
                        now_flag += 1
                    else:
                        self.remind_label.setText("已眨眼{}次\n还需眨眼{}次".format(self.eye_flash_counter, (
                                random_eye_flash_number - self.eye_flash_counter)))
                        self.check_eye_flash(average_EAR)
                        self.turn_right_counter = 0
                        self.turn_left_counter = 0
                        self.mouth_open_counter = 0

            elif len(rects) == 0:
                QApplication.processEvents()
                self.remind_label.setText("没有检测到人脸!")

            elif len(rects) > 1:
                QApplication.processEvents()
                self.remind_label.setText("检测到超过一张人脸!")

            show_video = cv2.cvtColor(cv2.resize(frame, (self.WIN_WIDTH, self.WIN_HEIGHT)), cv2.COLOR_BGR2RGB)
            self.show_image = QImage(show_video.data, show_video.shape[1], show_video.shape[0], QImage.Format_RGB888)
            self.camera_label.setPixmap(QPixmap.fromImage(self.show_image))

            if total_frame_counter >= 1000.0:
                QMessageBox.about(self, '警告', '已超时,未通过活体检测')
                self.remind_label.setText("")
                return False

    def check_eye_flash(self, average_EAR):
        if average_EAR < self.EAR_THRESH:
            self.eye_flash_continuous_frame += 1
        else:
            if self.eye_flash_continuous_frame >= self.EAR_CONSTANT_FRAMES:
                self.eye_flash_counter += 1
            self.eye_flash_continuous_frame = 0

    def check_mouth_open(self, mouth_MAR):
        if mouth_MAR > self.MOUTH_THRESH:
            self.mouth_open_continuous_frame += 1
        else:
            if self.mouth_open_continuous_frame >= self.MOUTH_CONSTANT_FRAMES:
                self.mouth_open_counter += 1
            self.mouth_open_continuous_frame = 0

    def check_right_turn(self, leftRight_FR):
        if leftRight_FR <= 0.5:
            self.turn_right_continuous_frame += 1
        else:
            if self.turn_right_continuous_frame >= self.RIGHT_CONSTANT_FRAMES:
                self.turn_right_counter += 1
            self.turn_right_continuous_frame = 0

    def check_left_turn(self, leftRight_FR):
        if leftRight_FR >= 2.0:
            self.turn_left_continuous_frame += 1
        else:
            if self.turn_left_continuous_frame >= self.LEFT_CONSTANT_FRAMES:
                self.turn_left_counter += 1
            self.turn_left_continuous_frame = 0

阅读完本博客后可以继续阅读:

用户端逻辑:

  • 人脸识别:Python | 人脸识别系统 — 人脸识别
  • 背景模糊:Python | 人脸识别系统 — 背景模糊
  • 姿态检测:Python | 人脸识别系统 — 姿态检测
  • 人脸比对:Python | 人脸识别系统 — 人脸比对
  • 用户操作:Python | 人脸识别系统 — 用户操作

管理员端逻辑:

  • 管理员操作:
  • 用户操作:

注:以上代码仅为参考,若需要运行,请参考项目GitHub完整源代码:  Su-Face-Recognition: A face recognition for user logining

你可能感兴趣的:(Python,python,pyqt,pycharm,计算机视觉,图像处理)