- 【人工智能】随机森林的智慧:集成学习的理论与实践
蒙娜丽宁
人工智能人工智能随机森林集成学习
随机森林(RandomForest)是一种强大的集成学习算法,通过构建多棵决策树并结合投票或平均预测提升模型性能。本文深入探讨了随机森林的理论基础,包括决策树的构建、Bagging方法和特征随机选择机制,并通过LaTeX公式推导其偏差-方差分解和误差分析。接着,我们详细描述了随机森林的算法流程,分析其在分类和回归任务中的适用性。文章还通过实验对比随机森林与单一决策树及其他算法(如SVM)的性能,探
- 大模型——Spring Boot 整合 Spring AI 实现项目接入ChatGPT
不二人生
大模型人工智能大模型
大模型——SpringBoot整合SpringAI实现项目接入ChatGPT随着人工智能技术的快速发展,越来越多的应用程序开始集成人工智能功能,以提供更智能、更个性化的体验。诸如ChatGPT等开放性大型语言模型的出现,使得自然语言处理和对话系统的开发变得更加容易和普及。这些技术已经在社交媒体、客户服务、教育等领域展现出巨大潜力,对于提升用户体验和提高工作效率至关重要。优势在之前,openai已经
- 深度学习在SSVEP信号分类中的应用分析
自由的晚风
深度学习分类人工智能
目录前言1.SSVEP信号分类的处理流程2.模型输入和数据预处理3.模型结构设计3.1卷积神经网络(CNN)3.2长短期记忆网络(LSTM)4.训练方法与激活函数5.性能评估与挑战6.未来方向前言随着脑机接口(BCI)技术的发展,SSVEP(稳态视觉诱发电位)因其高信息传输速率和短训练时间而成为最受欢迎的BCI范式之一。近年来,深度学习方法在SSVEP信号分类中取得了显著的成果。本文通过对31个深
- 大语言模型引擎全解析:Transformers、vLLM、Llama.cpp等,最佳选择全攻略!
大模型入门教程
语言模型llama人工智能DeepSeekpromptAI大模型大模型
近年来,大语言模型(LLMs)如GPT、LLaMA、BERT等已经成为人工智能领域的核心驱动力。然而,如何高效地运行和优化这些模型,成为了开发者和研究者面临的重要挑战。为此,一系列专为大语言模型设计的引擎应运而生。本文将带你深入了解Transformers、vLLM、Llama.cpp、SGLang、MLX和Ollama这些引擎,帮助你找到最适合的工具,释放大语言模型的全部潜力!作为技术人员,不仅
- PSPNet在图像超分辨率中的应用
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
PSPNet在图像超分辨率中的应用1.背景介绍图像超分辨率(ImageSuper-Resolution,ISR)是计算机视觉领域的一个重要研究方向,旨在从低分辨率图像中重建高分辨率图像。传统的ISR方法主要基于插值算法,如双线性插值、双三次插值等,但这些方法往往无法恢复图像的高频细节信息。近年来,随着深度学习的发展,基于卷积神经网络(ConvolutionalNeuralNetwork,CNN)的
- 基于文本特征的微博谣言检测
机器懒得学习
人工智能大数据图像处理计算机视觉
随着社交媒体的普及,微博等平台成为了信息传播的重要渠道。然而,虚假信息和谣言的传播也带来了严重的社会问题。因此,自动化的谣言检测技术变得尤为重要。本文将介绍如何基于文本特征,使用深度学习模型(如LSTM、CNN)和传统机器学习模型(如SVM)来实现微博谣言检测,并对这些模型的性能进行比较。完整项目地址:基于文本特征的微博谣言检测1.项目概述本项目旨在通过分析微博文本内容,自动检测其中的谣言。系统通
- 基于深度学习的恶意软件检测系统:设计与实现
机器懒得学习
深度学习人工智能
引言随着信息技术的飞速发展,恶意软件(如病毒、木马、勒索软件等)对全球网络安全构成了严重威胁。传统的恶意软件检测方法(如特征码匹配、行为分析等)在面对新型恶意软件变种时往往力不从心。近年来,深度学习技术在模式识别和分类任务中取得了显著成效,为恶意软件检测领域带来了新的机遇。本文将详细介绍一个基于深度学习的恶意软件检测系统的开发过程,该系统利用长短期记忆网络(LSTM)对Windows可执行程序的A
- AI Agent: AI的下一个风口 从图形用户界面到自然语言的进化
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AIAgent:AI的下一个风口从图形用户界面到自然语言的进化文章目录AIAgent:AI的下一个风口从图形用户界面到自然语言的进化1.背景介绍1.1人机交互的演变历程1.1.1命令行界面时代1.1.2图形用户界面时代1.1.3自然语言交互的兴起1.2AI技术的发展现状1.2.1机器学习和深度学习的突破1.2.2自然语言处理技术的进步1.2.3知识图谱和语义理解的发展1.3AIAgent的概念与意
- 基于PyTorch的深度学习4——使用numpy实现机器学习vs使用Tensor及Antograd实现机器学习
Wis4e
深度学习机器学习pytorch
首先,给出一个数组x,然后基于表达式y=3x2+2,加上一些噪音数据到达另一组数据y。然后,构建一个机器学习模型,学习表达式y=wx2+b的两个参数w、b。利用数组x,y的数据为训练数据。最后,采用梯度梯度下降法,通过多次迭代,学习到w、b的值。以下为具体步骤:1)导入需要的库。importnumpyasnp%matplotlibinlinefrommatplotlibimportpyplotas
- AI 大模型应用数据中心建设:数据中心成本优化
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
AI大模型应用数据中心建设:数据中心成本优化1.背景介绍在人工智能(AI)和大模型应用的快速发展中,数据中心(DataCenter)成为了一个至关重要的组成部分。无论是进行深度学习模型的训练,还是大模型应用的推理,数据中心都需要提供充足的计算资源、存储空间和网络带宽。随着AI模型和大数据量的增长,数据中心的建设和管理成本逐渐成为AI技术落地和应用的核心挑战之一。为了优化数据中心成本,同时保持高性能
- 深度学习-144-Text2SQL之基于langchain的少量样本提示词模板FewShotPromptTemplate的应用实战(三)
皮皮冰燃
深度学习深度学习langchainText2SQL
文章目录1基本组件1.1大模型1.2数据库Chinook1.2.1创建并载入数据1.2.2SQLDatabase2年龄最大的员工姓名和年龄3少量样本提示词模板3.1创建示例集3.2创建格式化程序3.3创建示例选择器3.4创建少量示例提示词模板3.5应用测试3.6添加新示例4参考附录1基本组件1.1大模型fromlangchain_ollamaimportChatOllamaimportosos.e
- Pytorch 第九回:卷积神经网络——ResNet模型
Start_Present
pytorchcnnpython分类深度学习
Pytorch第九回:卷积神经网络——ResNet模型本次开启深度学习第九回,基于Pytorch的ResNet卷积神经网络模型。这是分享的第四个卷积神经网络模型。该模型是基于解决因网络加深而出现的梯度消失和网络退化而进行设计的。接下来给大家分享具体思路。本次学习,借助的平台是PyCharm2024.1.3,python版本3.11numpy版本是1.26.4,pytorch版本2.0.0+cu11
- RoPE——Transformer 的旋转位置编码
机智的小神仙儿
深度学习大模型transformer深度学习人工智能
在自然语言处理领域,Transformer是现代深度学习模型的基础,而位置编码(PositionEmbedding)则是Transformer处理序列数据的关键模块之一。近年来,一种新型的位置编码方法RoPE(RotaryPositionEmbedding)得到了广泛关注。本文将全面解读RoPE的背景、原理、实现、优势及其应用场景,帮助读者深入理解这一方法。1.什么是RoPE?RoPE(Rotar
- 每天五分钟深度学习pytorch:基于Pytorch搭建ResNet模型的残差块
每天五分钟玩转人工智能
深度学习框架pytorch深度学习pytorch人工智能ResNet机器学习
残差块我们分析一下这个残差块,x经过两个卷积层得到F(x),然后F(x)+x作为残差块的输出,此时就有一个问题,这个问题就是F(x)+x的维度问题,如果图片数据经过两个卷积层之后F(x)变小(height和weight变小)或者通道数发生了变化,那么此时F(x)是没有办法和x相加的,当然我们可以学习前面的GoogLeNet的方式,也就是说卷积之后的F(x)和x一样,大小不变,或者对x变道和F(x)
- 信号处理应用:电力系统中的信号处理_(9).基于电力系统信号的数据挖掘技术
kkchenkx
信号处理技术仿真模拟信号处理数据挖掘人工智能
基于电力系统信号的数据挖掘技术1.引言电力系统中的信号处理是一个重要的研究领域,涉及电力系统的监测、故障诊断、状态评估等多个方面。随着大数据和人工智能技术的发展,数据挖掘技术在电力系统中的应用越来越广泛。本节将介绍如何利用数据挖掘技术对电力系统中的信号进行处理和分析,以提高系统的可靠性和效率。2.电力系统中的信号类型在电力系统中,信号可以分为多种类型,包括:电压信号:反映电力系统的电压水平,用于检
- Training-free Neural Architecture Searchthrough Variance of Knowledge of Deep Network Weights(预览版本)
境心镜
免训练深度学习人工智能NAS
代码位置摘要深度学习彻底改变了计算机视觉,但它使用深度网络架构取得了巨大的成功,而这些架构大多是手工制作的,因此可能不是最理想的。神经架构搜索(NAS)旨在通过遵循明确定义的优化范式来弥补这一差距,该范式系统地寻找最佳架构,给定客观标准,例如最大分类准确度。然而,NAS的主要限制是其天文数字般的计算成本,因为它通常需要从头开始训练每个候选网络架构。在本文中,我们旨在通过基于Fisher信息提出一种
- 智能教育:DeepSeek在课堂管理中的应用与代码实现
Evaporator Core
#DeepSeek快速入门系统架构设计师Python开发经验deepseek
课堂管理是教育领域的重要组成部分,它直接影响教学效果和学生的学习体验。随着人工智能技术的发展,DeepSeek正在通过其强大的算法和数据处理能力,推动课堂管理的智能化和高效化。本文将结合代码实现,深入探讨DeepSeek在课堂管理中的应用。一、智能课堂管理系统:从数据到实时监控智能课堂管理的核心在于通过实时监控学生的学习行为,提供及时的反馈和调整。DeepSeek通过深度学习算法,能够从课堂数据中
- CCF-GESP Python一级考试全解析:网络协议+编程技能双突破
奕澄羽邦
python网络协议开发语言
第一章CCF-GESP考试全景透视1.1认证体系权威性中国计算机学会(CCF)主办的GESP编程能力等级认证,是国内首个面向青少年的编程能力标准化评估体系。Python一级考试作为入门级认证,主要考察考生对计算机基础逻辑、编程工具使用及网络基础概念的掌握程度,证书受教育部认可,为后续人工智能、大数据等领域学习奠定基石。1.2考试内容三维度编程语言:Python语法基础(变量、循环、条件判断)、函数
- 基于PyTorch的深度学习5——神经网络工具箱
Wis4e
深度学习pytorch神经网络
可以学习如下内容:•介绍神经网络核心组件。•如何构建一个神经网络。•详细介绍如何构建一个神经网络。•如何使用nn模块中Module及functional。•如何选择优化器。•动态修改学习率参数。5.1核心组件神经网络核心组件不多,把这些组件确定后,这个神经网络基本就确定了。这些核心组件包括:1)层:神经网络的基本结构,将输入张量转换为输出张量。2)模型:层构成的网络。3)损失函数:参数学习的目标函
- 深入探讨如何在LangChain中将参数从一个步骤传递到下一个步骤:高级技巧与实际应用
m0_57781768
langchain
深入探讨如何在LangChain中将参数从一个步骤传递到下一个步骤:高级技巧与实际应用在现代软件开发中,特别是在复杂的自然语言处理(NLP)和人工智能应用中,数据的传递和处理是至关重要的。LangChainExpressionLanguage(LCEL)为开发者提供了一种强大的工具,能够有效地管理数据流,并确保任务链中的每一步都能顺利进行。在这些任务链中,开发者常常需要将数据从一个步骤无缝地传递到
- ManusAl引发全球关注:通用AI代理新篇章
耶耶Norsea
网络杂烩人工智能
摘要近日,ManusAl合伙人张涛针对邀请码价格问题作出紧急回应。ManusAl作为首个通用AI代理,在全球范围内引起轰动,其性能超越了OpenAI的产品。ManusAl不仅是一个聊天机器人或工作流工具,它作为一个真正自主的主体,能够弥合概念与执行之间的差距。当其他AI还在生成想法时,ManusAl已经开始交付实际成果,代表了人机协作的新一代范式,让用户提前体验接近通用人工智能(AGI)的能力。关
- 深度学习-Android-图片加载框架-Glide-(二)-切入源码层深入分析-Glide-缓存策略
2401_84123077
程序员androidglide缓存
介绍在上一篇中,我们知道了Glide框架的最基本的执行流程,那么只知道基本执行流程,这显然是不够的,我们要深挖Glide框架的细节处理原理,比如缓存机制,图片处理等,这一篇我们就一起去探索Glide的缓存机制。Glide缓存机制可以说是设计的非常完美,考虑的非常周全,下面就以一张表格来说明下Glide缓存。缓存类型缓存代表说明活动缓存ActiveResources如果当前对应的图片资源是从内存缓存
- 【openAI库】Python语言openAI库详解:从入门到精通(从0到1手把手教程)
ChatGPT-千鑫
Python基础人工智能python开发语言人工智能gptAIGC机器学习
欢迎来到我的博客!很高兴能在这里与您相遇!首页:GPT-千鑫–热爱AI、热爱Python的天选打工人,活到老学到老!!!导航-人工智能系列:包含OpenAIAPIKey教程,50个Prompt指令,Midjourney生成攻略等更多教程…-常用开发工具:包含AI代码补全工具,Vscode-AI工具,IDERorPycharm-AI工具,获取OpenAIAPIKey的多种方式等更多教程…-VScod
- 技术领域,有许多优秀的博客和网站
小赖同学啊
Testmanger技术博客
在技术领域,有许多优秀的博客和网站为开发者、工程师和技术爱好者提供了丰富的学习资源和行业动态。以下是一些常用的技术博客和网站,涵盖了编程、软件开发、数据科学、人工智能、网络安全等多个领域:1.综合技术博客1.1Medium网址:https://medium.com特点:Medium是一个开放的内容平台,许多技术专家和开发者在这里分享技术文章、教程和行业见解。你可以通过搜索特定技术主题找到相关内容。
- 物联网通过数字孪生技术实现设备状态的实时仿真和优化
小赖同学啊
智能硬件物联网
数字孪生(DigitalTwin)是一种通过虚拟模型实时映射和仿真物理设备状态的技术。它结合了物联网(IoT)、大数据、人工智能(AI)和仿真技术,能够实现对设备状态的实时监控、预测和优化。以下是数字孪生技术在设备状态实时仿真和优化中的应用及实现路径:一、数字孪生的核心概念1.物理实体实际的设备或系统(如工厂设备、风力发电机、汽车)。2.虚拟模型物理实体的数字化表示,通常包括几何模型、行为模型和数
- 什么是MCP协议?AI Agent时代如何选择MCP协议?
猫头虎
人工智能MCPAI编程ideagiAIGCAI-native
什么是MCP协议?AIAgent时代如何选择MCP协议?摘要在人工智能(AI)迅猛发展的今天,如何让大型语言模型(LLM)充分利用外部数据和工具已成为关键问题。MCP协议(ModelContextProtocol,模型上下文协议)作为一种开放标准,正以其统一、灵活且安全的设计,为解决数据孤岛和碎片化集成问题提供了一条全新的路径。本文将详细解析MCP协议的原理、架构、优势及在AIAgent时代下的应
- 【人工智能基础】生成模型:让数据“无中生有”的神奇魔法
roman_日积跬步-终至千里
#人工智能基础知识人工智能
文章目录一、生成模型的发展脉络二、生成模型的基本原理三、主要生成模型及其逻辑1、生成对抗网络(GAN)2、变分自编码器(VAE)3、扩散模型(DPM)4、基于能量的模型(EBM)5、正规化流(NF)四、生成模型对比分析五、生成模型的应用拓展一、生成模型的发展脉络在深度学习尚未兴起的时期,计算机视觉领域的传统图像生成算法主要依赖纹理合成和纹理映射等技术。这些算法基于手工设计的特征进行图像构建,然而,
- 智能客服到个人助理,国内AI大模型如何改变我们的生活?
python_知世
人工智能大语言模型AGI自然语言处理ai大模型智能客服计算机技术
引言随着人工智能(AI)技术的高速发展,AI大模型越来越多地出现在我们的日常生活和工作中。国内的AI大模型在过去几年里取得了显著的进展,不少独创的技术点和实际应用令人瞩目。那么,国内的AI大模型有哪些独创的技术点?它们在实际应用中又有哪些出色表现呢?此外,普通人又该如何利用这些大模型提升工作和生活的质量和效率呢?本文将为你一一解析。一、国内AI大模型的独创技术点多模态学习多模态学习是国内AI大模型
- 从0到1搭建个人AI助手:让技术改变生活
不太会写
人工智能生活ai智能体
从0到1搭建个人AI助手:让技术改变生活在这个人工智能飞速发展的时代,拥有一个专属的AI助手不再是科幻电影中的场景。今天,我就来和大家分享如何一步步搭建属于自己的个人AI助手,无论你是编程小白还是技术大神,都能在这个过程中找到乐趣和收获,让技术实实在在地改变我们的日常生活。一、为什么要搭建个人AI助手想象一下,每天清晨,你的AI助手轻声唤醒你,为你播报今日的天气、日程安排以及最新的新闻资讯。当你在
- AIGC技术研究与应用 ---- 下一代人工智能:新范式!新生产力!(2.1-大模型发展历程 之 背景与开端)
shiter
AI重制版】人工智能系统解决方案与技术架构人工智能AIGC深度学习
文章大纲按照目标不同,AI大模型可分为四类,多模态为未来方向NLP大模型CV大模型科学计算大模型多模态大模型2022年是大模型技术的拐点,前期技术铺垫奠定了基础生成式模型的开端VAE与GANVAEGAN参考文献与学习路径GPT系列模型解析前序文章模型进化券商研报陆奇演讲按照目标不同,AI大模型可分为四类,多模态为未来方向NLP大模型自然语言处理(NaturalLanguageProcessing,
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要