matlab 使用预训练神经网络和SVM进行苹果分级(带图形界面)支持其他物品图片分级或者分类

目录

数据集:

实验代码:alexnet版

如果你的matlab不是正版,先看这里:

数据集结构:

训练代码:

训练结果:

 图形界面:

界面展示:

其他: 

 输出结果:


        实验思路是使用预训练神经网络对图片进行特征提取,然后再使用SVM对得到的特征进行处理。

        写完后试过基于形态学分类,可能是数据集的原因,用了面积、周长、最小外接矩形的长和宽、离心率、灰度均值、HSV均值,方差等作为特征,结果并不理想。

        用的matlab2021a,老师那要的(没法发安装包,只能线下找我)低版本不确定能用。

数据集:

自己搞得,不太行,还是建议你用其他的网上数据集

实验代码:alexnet版

如果你的matlab不是正版,先看这里:

如果你的matlab不是正版,无法下载Deep Learning Toolbox Model for AlexNet Network来获得已经训练好的神经网络可以去官网下载,或者在我这花1积分下载Deep Learning Toolbox Model for AlexNet Network - File Exchange - MATLAB CentralDownload and share free MATLAB code, including functions, models, apps, support packages and toolboxeshttps://ww2.mathworks.cn/matlabcentral/fileexchange/59133-deep-learning-toolbox-model-for-alexnet-network?s_tid=ta_fx_results

如果是在b站上下载的2022版有可能会崩溃,提前做好心理准备(偶然现象) 

下载完后(如果是压缩包的话先解压),将安装包拖进matlab的工作目录matlab 使用预训练神经网络和SVM进行苹果分级(带图形界面)支持其他物品图片分级或者分类_第1张图片

 然后双击工作目录里的这个安装包来运行它,会弹出这个界面

matlab 使用预训练神经网络和SVM进行苹果分级(带图形界面)支持其他物品图片分级或者分类_第2张图片

按提示操作

matlab 使用预训练神经网络和SVM进行苹果分级(带图形界面)支持其他物品图片分级或者分类_第3张图片

 输入完毕后验证电子邮件

matlab 使用预训练神经网络和SVM进行苹果分级(带图形界面)支持其他物品图片分级或者分类_第4张图片

 设置密码

matlab 使用预训练神经网络和SVM进行苹果分级(带图形界面)支持其他物品图片分级或者分类_第5张图片

 就开始下载了

matlab 使用预训练神经网络和SVM进行苹果分级(带图形界面)支持其他物品图片分级或者分类_第6张图片

 下载完就能用已经训练好的alexnet了

数据集结构:

数据集下载        我这个数据集很一般,建议从网上找数据集

 matlab 使用预训练神经网络和SVM进行苹果分级(带图形界面)支持其他物品图片分级或者分类_第7张图片

 apple数据集,里面的每个文件夹是一个类别(名字随便写,不过最好不是中文),图片是哪一种就放在那个文件夹里

训练代码:

file是数据集所在文件夹

训练完会有提示,让你选择保存不保存数据集

报错说alexnet什么的看上面-------如果你的matlab不是正版

clc;
clear;
file = 'D:/apple';
% 读取file中所有图片,以文件夹名作为标签
appleData = imageDatastore(file, 'IncludeSubfolders', true, 'LabelSource', 'foldernames')
% 调整大小适应后来的AlexNet模型输入
appleData.ReadFcn = @(x) imresize(imread(x), [227 227]);
% 划分测试集训练集,会打乱
[trainImds, testImds] = splitEachLabel(appleData, 0.8, 'randomized');
net = alexnet;% 加载AlexNet模型
% 特征提取
% 使用activations函数对训练集和测试集的图像进行特征提取
% 输出第七层的特征
featuresTrain = activations(net, trainImds, 'fc7', 'OutputAs', 'rows');
featuresTest = activations(net, testImds, 'fc7', 'OutputAs', 'rows');
fprintf('开始训练');
% 训练SVM,fitcecoc任数训练SVM分类器
svmModel = fitcecoc(featuresTrain,trainImds.Labels);
% 在测试集计算准确率
fprintf('预测值:');
predictedLabels = predict(svmModel, featuresTest);
fprintf('真实值:');
testImds.Labels
fprintf('正确率:');
accuracy = mean(predictedLabels == testImds.Labels)
x = input('是否保存svmModel已训练模型(y/n)',"s") ;
if(x=='y')
    save svm_Model svmModel
    fprintf('模型已保存到svm_Model.mat')
end

训练结果:


appleData = 

  ImageDatastore - 属性:

                       Files: {
                              'D:\apple\1\1.jpeg';
                              'D:\apple\1\1.jpg';
                              'D:\apple\1\10.jpg'
                               ... and 197 more
                              }
                     Folders: {
                              'D:\apple'
                              }
                      Labels: [1; 1; 1 ... and 197 more categorical]
    AlternateFileSystemRoots: {}
                    ReadSize: 1
      SupportedOutputFormats: ["png"    "jpg"    "jpeg"    "tif"    "tiff"]
         DefaultOutputFormat: "png"
                     ReadFcn: @readDatastoreImage

开始训练预测值:真实值:
ans = 

  41×1 categorical 数组

     1 
     1 
     1 
     1 
     1 
     1 
     1 
     1 
     1 
     1 
     1 
     1 
     1 
     2 
     2 
     2 
     2 
     2 
     2 
     2 
     2 
     2 
     2 
     2 
     2 
     2 
     2 
     3 
     3 
     3 
     3 
     3 
     3 
     3 
     3 
     3 
     3 
     3 
     3 
     3 
     3 

正确率:
accuracy =

    0.9512

是否保存svmModel已训练模型(y/n)y
模型已保存到svm_Model.mat>> 

 图形界面:

用matlab自带的设计app做的

matlab 使用预训练神经网络和SVM进行苹果分级(带图形界面)支持其他物品图片分级或者分类_第8张图片

 我主要就写了一个按钮的回调,一定要记着保存SVM模型后再用,没做读取错误报错。

classdef apple < matlab.apps.AppBase

    % Properties that correspond to app components
    properties (Access = public)
        UIFigure          matlab.ui.Figure
        EditField_2       matlab.ui.control.EditField
        EditField_2Label  matlab.ui.control.Label
        EditField         matlab.ui.control.EditField
        Label             matlab.ui.control.Label
        Image             matlab.ui.control.Image
        Button            matlab.ui.control.Button
    end

    

    % Callbacks that handle component events
    methods (Access = private)

        % Button pushed function: Button
        function ButtonPushed(app, event)
            global svmModel net;% 模型
            % 如果没有模型,加载模型
            if(exist('svmModel','var')&&exist('net','var'))
                net = alexnet;% 加载AlexNet模型
                load svm_Model svmModel% 加载已训练模型
            end
            
            % 打开文件对话框 禁止多选
            [file,path]=uigetfile('*.*',' Multiselect ' ,'off');
            if(file==0) % 没读文件
                return
            end
            % 更改路径文本
            file = [path,file];
            app.EditField.Value = file;
            app.Image.ImageSource = imread(file);% 更改图像显示
            % 创建需要读取特征的数据
            appleData =  imageDatastore(file);
            % 调整大小适应后来的AlexNet模型输入
            appleData.ReadFcn = @(x) imresize(imread(x), [227 227]);
            appleData = activations(net, appleData, 'fc7', 'OutputAs', 'rows');
            Labels = predict(svmModel, appleData);
            app.EditField_2.Value = string(Labels);
        end
    end

    % Component initialization
    methods (Access = private)

        % Create UIFigure and components
        function createComponents(app)

            % Create UIFigure and hide until all components are created
            app.UIFigure = uifigure('Visible', 'off');
            app.UIFigure.Position = [100 100 415 393];
            app.UIFigure.Name = 'MATLAB App';

            % Create Button
            app.Button = uibutton(app.UIFigure, 'push');
            app.Button.ButtonPushedFcn = createCallbackFcn(app, @ButtonPushed, true);
            app.Button.FontSize = 20;
            app.Button.Position = [36 21 100 34];
            app.Button.Text = '选择文件';

            % Create Image
            app.Image = uiimage(app.UIFigure);
            app.Image.Position = [86 134 237 237];

            % Create Label
            app.Label = uilabel(app.UIFigure);
            app.Label.HorizontalAlignment = 'right';
            app.Label.FontSize = 20;
            app.Label.Position = [23 68 125 26];
            app.Label.Text = '图片文件路径';

            % Create EditField
            app.EditField = uieditfield(app.UIFigure, 'text');
            app.EditField.Editable = 'off';
            app.EditField.Position = [157 61 230 36];

            % Create EditField_2Label
            app.EditField_2Label = uilabel(app.UIFigure);
            app.EditField_2Label.HorizontalAlignment = 'right';
            app.EditField_2Label.FontSize = 20;
            app.EditField_2Label.Position = [209 22 65 26];
            app.EditField_2Label.Text = '级别:';

            % Create EditField_2
            app.EditField_2 = uieditfield(app.UIFigure, 'text');
            app.EditField_2.Editable = 'off';
            app.EditField_2.Position = [273 23 50 24];

            % Show the figure after all components are created
            app.UIFigure.Visible = 'on';
        end
    end

    % App creation and deletion
    methods (Access = public)

        % Construct app
        function app = apple

            % Create UIFigure and components
            createComponents(app)

            % Register the app with App Designer
            registerApp(app, app.UIFigure)

            if nargout == 0
                clear app
            end
        end

        % Code that executes before app deletion
        function delete(app)

            % Delete UIFigure when app is deleted
            delete(app.UIFigure)
        end
    end
end

界面展示:

matlab 使用预训练神经网络和SVM进行苹果分级(带图形界面)支持其他物品图片分级或者分类_第9张图片

matlab 使用预训练神经网络和SVM进行苹果分级(带图形界面)支持其他物品图片分级或者分类_第10张图片

其他: 

如果觉着一个网络不好的话,这里还有一种操作:

或者你们还可以使用 Adaboost

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。

这几个网络都可以再之前的官网下载

clc;
clear;
file = 'D:/apple';
% 读取file中所有图片,以文件夹名作为标签
appleData = imageDatastore(file, 'IncludeSubfolders', true, 'LabelSource', 'foldernames')
% 调整大小适应后来的AlexNet模型输入
appleData.ReadFcn = @(x) imresize(imread(x), [227 227]);
% 划分测试集训练集,会打乱
[trainImds, testImds] = splitEachLabel(appleData, 0.8, 'randomized');
fprintf("\n开始加载预训练模型");
net1 = alexnet;% 加载预训练模型
net2 = vgg16;
net3 = resnet18;
% 特征提取
% 使用activations函数对训练集和测试集的图像进行特征提取
% alexnet,他有8层神经网络,
% 其中前5层是卷积层,后3层是全连接层。其中fc7层是全连接层的第2个,它包含4096个神经元
% 该层可以提取图像的高级语义特征,这些特征已经经过多次卷积和池化操作,
% 能够捕捉到图像的基本形状和纹理信息,同时又不会过于抽象
% 输出第七层的特征,按行输出,
fprintf("\n开始使用预训练模型提取特征");
featuresTrain1 = activations(net1, trainImds, 'fc7', 'OutputAs', 'channels');
featuresTrain2 = activations(net2, trainImds, 'fc7', 'OutputAs', 'channels');
featuresTrain3 = activations(net3, trainImds, 'pool5', 'OutputAs', 'channels');
fprintf("\n已经提取训练集特征提取特征");
featuresTest1 = activations(net1, testImds, 'fc7', 'OutputAs', 'channels');
featuresTest2 = activations(net2, testImds, 'fc7', 'OutputAs', 'channels');
featuresTest3 = activations(net3, testImds, 'pool5', 'OutputAs', 'channels');
fprintf("\n已经提取测试集特征提取特征");
featuresTrain1 = reshape(featuresTrain1, [], size(featuresTrain1, 4))';
featuresTrain2 = reshape(featuresTrain2, [], size(featuresTrain2, 4))';
featuresTrain3 = reshape(featuresTrain3, [], size(featuresTrain3, 4))';
featuresTest1 = reshape(featuresTest1, [], size(featuresTest1, 4))';
featuresTest2 = reshape(featuresTest2, [], size(featuresTest2, 4))';
featuresTest3 = reshape(featuresTest3, [], size(featuresTest3, 4))';
fprintf('\n开始训练');
% 训练SVM,fitcecoc任数训练SVM分类器
svmModel_1 = fitcecoc(featuresTrain1,trainImds.Labels);
svmModel_2 = fitcecoc(featuresTrain2,trainImds.Labels);
svmModel_3 = fitcecoc(featuresTrain3,trainImds.Labels);
% 在测试集计算准确率
predictedLabels1 = predict(svmModel_1, featuresTest1);
predictedLabels2 = predict(svmModel_2, featuresTest2);
predictedLabels3 = predict(svmModel_3, featuresTest3);
fprintf('alexnet 正确率:');
mean(predictedLabels1 == testImds.Labels)
fprintf('vgg16 正确率:');
mean(predictedLabels2 == testImds.Labels)
fprintf('resnet18 正确率:');
mean(predictedLabels3 == testImds.Labels)
% 返回一组数据中出现最频繁的元素
predictedLabels = mode([predictedLabels1, predictedLabels2, predictedLabels3], 2);
% 计算投票分类正确率
fprintf('投票正确率:');
accuracy = mean(predictedLabels == testImds.Labels)

x = input('是否保存已训练模型(y/n)',"s") ;
if(x=='y')
    save svm_Model_3 svmModel_1 svmModel_2 svmModel_3
    fprintf('模型已保存到 svm_Model_3.mat')
end

 输出结果:

这个1就很晃眼,大概率不是真的。


appleData = 

  ImageDatastore - 属性:

                       Files: {
                              'D:\apple\1\1.jpeg';
                              'D:\apple\1\1.jpg';
                              'D:\apple\1\10.jpg'
                               ... and 197 more
                              }
                     Folders: {
                              'D:\apple'
                              }
                      Labels: [1; 1; 1 ... and 197 more categorical]
    AlternateFileSystemRoots: {}
                    ReadSize: 1
      SupportedOutputFormats: ["png"    "jpg"    "jpeg"    "tif"    "tiff"]
         DefaultOutputFormat: "png"
                     ReadFcn: @readDatastoreImage


开始加载预训练模型
开始使用预训练模型提取特征
已经提取训练集特征提取特征
已经提取测试集特征提取特征
开始训练alexnet 正确率:
ans =

    0.9512

vgg16 正确率:
ans =

    0.9024

resnet18 正确率:
ans =

    0.9512

投票正确率:
accuracy =

     1

是否保存已训练模型(y/n)y
模型已保存到 svm_Model_3.mat>> 

你可能感兴趣的:(matlab,神经网络,支持向量机)