- 在仓颉开发语言中使用数据库
harmonyos-next
今天体验了一下在开发者大会上见到的CodeGenie,非常棒。AI正在影响着各行各业,这几天幽蓝君对此深有感触,身为打工人要保持不断学习的状态,不然就有可能被替代。今天跟大家分享一下在仓颉开发语言中如何使用数据库。我们这里说的是关系型数据库,首先还是要引入对应的模块,仓颉语言中关系型数据库的模块是:importohos.relational_store.*接下来数据库的操作流程可能很多友友都比较熟
- 什么是 Agentic AI?从聊天助手走向自主智能体
gs80140
AI人工智能
目录什么是AgenticAI?从聊天助手走向自主智能体一、AgenticAI概念解析AgenticAI的四大核心特征:二、AgenticAI系统架构:从ReAct到Auto-GPTReAct架构(Reasoning+Acting)Auto-GPT架构对比总结:三、应用场景:Agent正在落地的地方四、趋势与挑战未来趋势:面临挑战:五、小结什么是AgenticAI?从聊天助手走向自主智能体近年来,随
- SAM2论文解读-既实现了视频的分割一切,又比图像的分割一切SAM更快更好
↣life♚
计算机视觉大模型通用模型人工智能计算机视觉深度学习通用分割视频分割算法
code:https://github.com/facebookresearch/sam2/tree/maindemo:https://sam2.metademolab.com/paper:https://ai.meta.com/research/publications/sam-2-segment-anything-in-images-and-videos/这是SAM这是SAM2Facebook
- 让没有小窗播放的视频网站的视频小窗播放
万能的小裴同学
前端javascript
让没有小窗播放的视频网站的视频小窗播放//视频小窗播放控制台脚本//将此代码复制到浏览器控制台运行//运行后,页面中的视频将添加小窗播放功能(function(){//获取页面中的所有video元素constvideos=document.querySelectorAll('video');if(videos.length===0){console.log('页面中没有找到video元素');re
- 论文阅读:arxiv 2025 OThink-R1: Intrinsic Fast/Slow Thinking Mode Switching for Over-Reasoning Mitigation
CSPhD-winston-杨帆
论文阅读
总目录大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328https://www.doubao.com/chat/8815924393371650https://arxiv.org/pdf/2506.02397#page=17.09OThink文章目录速览研究背景与问题核心思路与方法实验结果结论与意义速览这篇论文聚焦于
- 旅游规划智能体之ReAct Agent实战
敲键盘的小夜猫
大语言模型pythonpython人工智能
引言本文将系统性地介绍如何运用ReAct框架构建旅游规划智能体,通过LangChain的create_react_agent方法实现智能决策和多步骤任务处理。ReAct框架作为现代AIAgent开发的核心技术之一,为构建具备复杂推理能力的智能系统提供了重要的理论基础和实践指导。ReAct框架核心原理c框架概念解析ReAct框架是Reasoning(推理)与Acting(行动)相结合的智能体设计范式
- S4-Driver: Scalable Self-Supervised Driving Multimodal Large Language Model with Spatio-Temporal
UnknownBody
LLMDailyMultimodal语言模型人工智能自然语言处理
文章主要内容总结本文提出了一种基于多模态大语言模型(MLLM)的可扩展自监督自动驾驶运动规划框架S4-Driver,旨在解决端到端自动驾驶中依赖人工标注和3D空间推理能力不足的问题。核心方法包括:稀疏体表示(SparseVolumeRepresentation):将多视图、多帧图像的视觉信息聚合到3D空间,通过轻量级投影和门控机制动态选择关键区域,增强模型的3D时空推理能力,且无需微调预训练的视觉
- 2024 CVPR Video ReCap Recursive Captioning of Hour-Long Videos Methods Notes
努力还债的学术吗喽
videocaption人工智能深度学习神经网络python自然语言处理计算机视觉
本文为个人论文核心内容Method精读笔记摘录,原文为2024CVPRVideoReCapRecursiveCaptioningofHour-LongVideos,需要更详细的论文精读Markdown解析,关注私戳包主领取在这里提供原文链接https://arxiv.org/pdf/2402.13250文章目录0.Abstract在这里插入图片描述1.Introduction【SimpleConc
- 【大模型】【DeepSeek】DeepSeek-R1:Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
量子-Alex
LLM大模型人工智能语言模型
DeepSeek-R1:通过强化学习激励大语言模型的推理能力0.论文摘要我们推出了第一代推理模型DeepSeek-R1-Zero和DeepSeek-R1。DeepSeek-R1-Zero是一个通过大规模强化学习(RL)训练而成的模型,没有经过监督微调(SFT)作为初步步骤,展现了卓越的推理能力。通过RL,DeepSeek-R1-Zero自然涌现出许多强大且有趣的推理行为。然而,它也面临诸如可读性差
- 【论文解读】MemGPT: 迈向为操作系统的LLM
vlln
transformer人工智能深度学习自然语言处理
1stauthor:CharlesPackerpaperMemGPT[2310.08560]MemGPT:TowardsLLMsasOperatingSystemscode:letta-ai/letta:Letta(formerlyMemGPT)isthestatefulagentsframeworkwithmemory,reasoning,andcontextmanagement.这个项目现在已
- 【论文阅读】VideoChat-R1: Enhancing Spatio-Temporal Perception via Reinforcement Fine-Tuning
s1ckrain
强化学习AIGC计算机视觉论文阅读多模态大模型强化学习
VideoChat-R1:EnhancingSpatio-TemporalPerceptionviaReinforcementFine-Tuning原文摘要研究现状:强化学习有关方法在视频理解任务中的应用仍未被充分探索。研究目标:方法:采用强化微调(RFT)结合GRPO,专门针对视频MLLMs进行优化。目标:增强模型对视频时空感知的能力。保持模型的通用能力。实验与发现RFT在小样本数据下即可显著提
- 学习笔记--Structural-RNN: Deep Learning on Spatio-Temporal Graphs
Giving_Kore
CV论文笔记StructuralRNNRNNCVspatiotemporal
论文链接:https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Jain_Structural-RNN_Deep_Learning_CVPR_2016_paper.pdf此为原创笔记,如需转载请注明Structural-RNN:DeepLearningonSpatio-TemporalGraphs [–AsheshJai
- 17、Swift框架微调实战(2)-QWQ-32B LORA微调cot数据集
Andy_shenzl
大模型学习SwiftQWQ微调LORA
1、QWQ-32B介绍1.1基本介绍QwQ是Qwen系列的大模型之一,专注于推理能力(reasoning)。相比于传统的指令微调(instruction-tuned)模型,QwQ具备思考与推理(thinkingandreasoning)的能力,因此在各种下游任务(特别是复杂问题)上,能实现显著的性能提升。QwQ-32B是该系列的中等规模推理模型,其性能可媲美当前最先进的推理模型,如DeepSeek
- GraphInstruct: Empowering Large Language Models with Graph Understanding and Reasoning Capability
UnknownBody
LLMDailyCausalandReasoningGraphNeuralNetwork语言模型人工智能自然语言处理
本文是LLM系列文章,针对《GraphInstruct:EmpoweringLargeLanguageModelswithGraphUnderstandingandReasoningCapability》的翻译。GraphDirective:赋予大型语言模型图形理解和推理能力摘要1引言2相关工作3GraphInstruct基准4GraphLM:在GraphInstruction上训练大型语言模型5
- 【保姆级教程 】模型蒸馏新突破:利用大模型提升小模型能力的Reasoning模型实践指南!
大模型入门教程
人工智能产品经理AI大模型大模型学习程序员大模型教学
01前言DeepSeek-R1的爆火让更多开发者注意到模型蒸馏技术——这种让小模型也能"开小灶"习得大模型知识精华的秘诀。今天我们就用Qwen2.5-1.5B小模型(相当于AI界的初中生)来进行实践!什么是模型蒸馏?就像普通学生跟着学霸学解题思路:-教师模型=学霸本霸(比如DeepSeek-R1)-学生模型=需要进步的Qwen2.5-1.5B-蒸馏数据=学霸的解题笔记三步速成法:制造"学霸笔记"(
- LangChain02-Agent与Memory模块
江畔柳前堤
AI大模型数据库opencv数据挖掘语音识别计算机视觉目标检测人工智能
Agent与Memory模块深度解析1.Agent模块原理1.1ReAct框架的实现机制Agent是LangChain中最具智能化的组件,其核心思想基于ReAct框架(Reasoning+Acting),即通过思维(Thought)和行动(Action)的协同实现自主决策。ReAct框架的核心流程如下:观察(Observation):接收用户输入或环境反馈。推理(Reasoning):通过LLM生
- 【LangGraph】langgraph.prebuilt.create_react_agent() 函数:快速创建基于 ReAct(Reasoning + Acting)架构的智能代理
彬彬侠
LangGraphLangGraphprebuiltcreate_react_agReAct
本文是对langgraph.prebuilt.create_react_agent函数的详细且全面的介绍,涵盖其定义、功能、设计理念、参数、返回值、使用场景、实现原理、示例代码、高级用法、注意事项、与其他方法的对比,以及学习建议。1.概述langgraph.prebuilt.create_react_agent是LangGraph库中的一个预构建函数,位于langgraph.prebuilt模块,
- Absolute Zero: Reinforced Self-play Reasoning with Zero Data
UnknownBody
LLMDailyLLMRL人工智能
文章主要内容总结本文提出了一种名为AbsoluteZero的强化学习新范式,旨在解决现有强化学习方法依赖人工标注数据的问题。核心是让模型通过自我博弈(self-play)自主生成任务并解决,无需任何外部数据。具体通过以下方面展开:核心框架:AbsoluteZero推理器(AZR)模型同时担任**任务提议者(proposer)和问题解决者(solver)**双重角色。提议者生成三种类型的编程任务(演
- Tina: Tiny Reasoning Models via LoRA
UnknownBody
LLMDailyLLMTrainingCausalandReasoning人工智能语言模型
主要内容研究背景与问题:语言模型在多种任务中表现出色,但实现强大的多步推理能力仍是挑战。通过监督微调增强推理存在依赖专家演示、可能导致浅层模仿等问题;强化学习虽能让模型灵活学习,但资源消耗大。本文聚焦于如何通过高效的强化学习在语言模型中经济高效地赋予推理能力。相关工作:介绍了开源推理模型的发展,如STILL、Sky-T1等旨在复制或超越先进推理模型能力;阐述了强化学习在推理任务中的应用,包括引入辅
- 免费热榜API——哔哩哔哩
小码哥(xmgcode88)
数据集java
一、请求地址http://api.dataguan.com/api/center/getBiBiHot二、请求方式post三、接口文档1、请求参数到www.dataguan.com免费获取apikey和sign,sign由apikey和apisecret生成字段说明是否必传apiKey接口钥匙是sign签名是2、响应说明字段说明topNum排名videos视频类型tname分类名称pic封面图片t
- 解密企业级大模型智能体Agentic AI 关键技术:MCP、A2A、Reasoning LLMs-企业级大模型智能体关键技术
解密企业级大模型智能体AgenticAI关键技术:MCP、A2A、ReasoningLLMs-企业级大模型智能体关键技术从今天开始,我们将系统地讲解企业级大模型智能体的所有关键技术、落地的最佳实践,以及众多大型项目。谈及企业级大模型智能体,我相信大家尤其是从去年9月,即2024年9月开始,接触到了越来越多与之相关的技术,包括很多框架,例如langchain、langgraph、crewAI。当然,
- 解密企业级大模型智能体Agentic AI 关键技术:MCP、A2A、Reasoning LLMs-1
解密企业级大模型智能体AgenticAI关键技术:MCP、A2A、ReasoningLLMs-1关键词:MCP、A2A、ADK、DeepSeek、ReasoningLLMs、ReinforcementLearning、ComputerUse、LangGraph联系信息:大咖微信:NLP_Matrix_Space联系电话:+1650-603-1290联系邮箱:
[email protected]
- 使用python+ffmpeg批量混剪视频
mj412828668
Pythonffmpegpython音视频开发语言
#encoding=utf-8importosimportitertoolsdefmain():#使用前,要先配置好ffmpeg的环境变量,并删除videos_path中txt文件夹下的所有文件ffmpeg_path="D:\\FFmpeg\\bin\\ffmpeg"videos_path="C:\\Users\\Yan\\Desktop\\videos"concat_list_path=vide
- 【论文阅读】PEEKABOO: Interactive Video Generation via Masked-Diffusion
s1ckrain
计算机视觉论文阅读计算机视觉AIGC
PEEKABOO:InteractiveVideoGenerationviaMasked-Diffusion原文摘要研究背景与问题现状:现代视频生成模型(如Sora)已能生成高质量视频,但缺乏用户交互控制能力。问题:交互控制是未来应用和创意表达的关键功能,但现有模型无法支持对生成视频的时空(spatio-temporal)内容进行灵活控制。核心贡献PEEKABOO方法一种新型的掩码注意力模块(ma
- Phi-4-reasoning技术报告
jacky_wxl(微信同号)
大模型人工智能
MarahAbdin,SahajAgarwal,AhmedAwadallah,VidhishaBalachandran,HarkiratBehl,LingjiaoChen,GustavodeRosa,SuriyaGunasekar,MojanJavaheripi,NeelJoshi,PieroKauffmann,YashLara,CaioCésarTeodoroMendes,ArindamMitr
- SAM 2: Segment Anything in Images and Videos
CyreneSimon
人工智能计算机视觉深度学习
SAM2:在图像和视频中分割任何内容作者NikhilaRavi,ValentinGabeur,Yuan-TingHu,RonghangHu等(MetaFAIR)论文:SAM2:SegmentAnythinginImagesandVideos项目代码:GitHubRepository互动演示:Demo摘要SAM2是一个用于处理图像和视频分割的统一模型。基于最初的SegmentAnythingMode
- LLM 的边界,真的只是预测下一个 Token 吗?
turingbooks
人工智能深度学习机器学习
在刚过去不久的GTC2025大会上,Meta首席AI科学家YannLeCun(一如既往地)再次发出了对当前主流大模型的尖锐批评。他坚持认为,LLM本质上仍是“Token生成器”,其核心在于预测离散Token序列,而非构建对世界的稳健理解。“LLMsaremeretokengenerators—lackingworldmodels,reasoning,planning,andmemory—andwi
- Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models
绒绒毛毛雨
搜索推荐语言模型人工智能自然语言处理
文章目录摘要1引言2背景:长思维链推理模型与过度思考现象2.1思维链(CoT)推理2.2长CoT推理模型中的过度思考问题3基于模型的高效推理3.1基于长度奖励设计的强化学习(RL)3.2使用可变长度CoT数据的监督微调(SFT)3.2.1构建可变长度CoT推理数据集3.2.2微调方法4基于推理输出的高效推理4.1将推理步骤压缩为更少的潜在表示4.2推理过程中的动态推理范式4.2.1基于显式标准的动
- 亚马逊云服务器性能深度优化方案(2025版)
国际云,接待
aws服务器运维云计算aws科技架构
亚马逊云服务器性能深度优化方案(2025版)一、计算架构全面升级1.新一代AI算力引擎•Trn2UltraServer实例:搭载64颗第二代Trainium芯片,单节点FP8算力达83.2PFlops,支持千亿参数大模型训练,训练速度较传统GPU方案提升4倍。•Trainium3芯片规划:采用3nm工艺,2025年Q4商用,计算密度较Trainium2提升2倍,能效优化40%,AI推理场景延迟压至
- 论文笔记:How Can Large Language Models Understand Spatial-Temporal Data?
UQI-LIUWJ
论文笔记论文阅读语言模型人工智能
arxiv2024011introLLM在NLP和CV领域表现出色,但将它们应用于时空预测任务仍然面临挑战,主要问题包括:数据不匹配传统的LLMs设计用于处理序列文本数据,而时空数据具有复杂的结构和动态性,这两者之间存在显著差异模型设计限制现有的时空预测方法通常需要为特定领域设计专门的模型,这限制了模型的通用性和适应性数据稀缺和泛化能力传统的时空预测方法在面对数据稀缺或稀疏的情况下表现不佳,且泛化
- java观察者模式
3213213333332132
java设计模式游戏观察者模式
观察者模式——顾名思义,就是一个对象观察另一个对象,当被观察的对象发生变化时,观察者也会跟着变化。
在日常中,我们配java环境变量时,设置一个JAVAHOME变量,这就是被观察者,使用了JAVAHOME变量的对象都是观察者,一旦JAVAHOME的路径改动,其他的也会跟着改动。
这样的例子很多,我想用小时候玩的老鹰捉小鸡游戏来简单的描绘观察者模式。
老鹰会变成观察者,母鸡和小鸡是
- TFS RESTful API 模拟上传测试
ronin47
TFS RESTful API 模拟上传测试。
细节参看这里:https://github.com/alibaba/nginx-tfs/blob/master/TFS_RESTful_API.markdown
模拟POST上传一个图片:
curl --data-binary @/opt/tfs.png http
- PHP常用设计模式单例, 工厂, 观察者, 责任链, 装饰, 策略,适配,桥接模式
dcj3sjt126com
设计模式PHP
// 多态, 在JAVA中是这样用的, 其实在PHP当中可以自然消除, 因为参数是动态的, 你传什么过来都可以, 不限制类型, 直接调用类的方法
abstract class Tiger {
public abstract function climb();
}
class XTiger extends Tiger {
public function climb()
- hibernate
171815164
Hibernate
main,save
Configuration conf =new Configuration().configure();
SessionFactory sf=conf.buildSessionFactory();
Session sess=sf.openSession();
Transaction tx=sess.beginTransaction();
News a=new
- Ant实例分析
g21121
ant
下面是一个Ant构建文件的实例,通过这个实例我们可以很清楚的理顺构建一个项目的顺序及依赖关系,从而编写出更加合理的构建文件。
下面是build.xml的代码:
<?xml version="1
- [简单]工作记录_接口返回405原因
53873039oycg
工作
最近调接口时候一直报错,错误信息是:
responseCode:405
responseMsg:Method Not Allowed
接口请求方式Post.
- 关于java.lang.ClassNotFoundException 和 java.lang.NoClassDefFoundError 的区别
程序员是怎么炼成的
真正完成类的加载工作是通过调用 defineClass来实现的;
而启动类的加载过程是通过调用 loadClass来实现的;
就是类加载器分为加载和定义
protected Class<?> findClass(String name) throws ClassNotFoundExcept
- JDBC学习笔记-JDBC详细的操作流程
aijuans
jdbc
所有的JDBC应用程序都具有下面的基本流程: 1、加载数据库驱动并建立到数据库的连接。 2、执行SQL语句。 3、处理结果。 4、从数据库断开连接释放资源。
下面我们就来仔细看一看每一个步骤:
其实按照上面所说每个阶段都可得单独拿出来写成一个独立的类方法文件。共别的应用来调用。
1、加载数据库驱动并建立到数据库的连接:
Html代码
St
- rome创建rss
antonyup_2006
tomcatcmsxmlstrutsOpera
引用
1.RSS标准
RSS标准比较混乱,主要有以下3个系列
RSS 0.9x / 2.0 : RSS技术诞生于1999年的网景公司(Netscape),其发布了一个0.9版本的规范。2001年,RSS技术标准的发展工作被Userland Software公司的戴夫 温那(Dave Winer)所接手。陆续发布了0.9x的系列版本。当W3C小组发布RSS 1.0后,Dave W
- html表格和表单基础
百合不是茶
html表格表单meta锚点
第一次用html来写东西,感觉压力山大,每次看见别人发的都是比较牛逼的 再看看自己什么都还不会,
html是一种标记语言,其实很简单都是固定的格式
_----------------------------------------表格和表单
表格是html的重要组成部分,表格用在body里面的
主要用法如下;
<table>
&
- ibatis如何传入完整的sql语句
bijian1013
javasqlibatis
ibatis如何传入完整的sql语句?进一步说,String str ="select * from test_table",我想把str传入ibatis中执行,是传递整条sql语句。
解决办法:
<
- 精通Oracle10编程SQL(14)开发动态SQL
bijian1013
oracle数据库plsql
/*
*开发动态SQL
*/
--使用EXECUTE IMMEDIATE处理DDL操作
CREATE OR REPLACE PROCEDURE drop_table(table_name varchar2)
is
sql_statement varchar2(100);
begin
sql_statement:='DROP TABLE '||table_name;
- 【Linux命令】Linux工作中常用命令
bit1129
linux命令
不断的总结工作中常用的Linux命令
1.查看端口被哪个进程占用
通过这个命令可以得到占用8085端口的进程号,然后通过ps -ef|grep 进程号得到进程的详细信息
netstat -anp | grep 8085
察看进程ID对应的进程占用的端口号
netstat -anp | grep 进程ID
&
- 优秀网站和文档收集
白糖_
网站
集成 Flex, Spring, Hibernate 构建应用程序
性能测试工具-JMeter
Hmtl5-IOCN网站
Oracle精简版教程网站
鸟哥的linux私房菜
Jetty中文文档
50个jquery必备代码片段
swfobject.js检测flash版本号工具
- angular.extend
boyitech
AngularJSangular.extendAngularJS API
angular.extend 复制src对象中的属性去dst对象中. 支持多个src对象. 如果你不想改变一个对象,你可以把dst设为空对象{}: var object = angular.extend({}, object1, object2). 注意: angular.extend不支持递归复制. 使用方法: angular.extend(dst, src); 参数:
- java-谷歌面试题-设计方便提取中数的数据结构
bylijinnan
java
网上找了一下这道题的解答,但都是提供思路,没有提供具体实现。其中使用大小堆这个思路看似简单,但实现起来要考虑很多。
以下分别用排序数组和大小堆来实现。
使用大小堆:
import java.util.Arrays;
public class MedianInHeap {
/**
* 题目:设计方便提取中数的数据结构
* 设计一个数据结构,其中包含两个函数,1.插
- ajaxFileUpload 针对 ie jquery 1.7+不能使用问题修复版本
Chen.H
ajaxFileUploadie6ie7ie8ie9
jQuery.extend({
handleError: function( s, xhr, status, e ) {
// If a local callback was specified, fire it
if ( s.error ) {
s.error.call( s.context || s, xhr, status, e );
}
- [机器人制造原则]机器人的电池和存储器必须可以替换
comsci
制造
机器人的身体随时随地可能被外来力量所破坏,但是如果机器人的存储器和电池可以更换,那么这个机器人的思维和记忆力就可以保存下来,即使身体受到伤害,在把存储器取下来安装到一个新的身体上之后,原有的性格和能力都可以继续维持.....
另外,如果一
- Oracle Multitable INSERT 的用法
daizj
oracle
转载Oracle笔记-Multitable INSERT 的用法
http://blog.chinaunix.net/uid-8504518-id-3310531.html
一、Insert基础用法
语法:
Insert Into 表名 (字段1,字段2,字段3...)
Values (值1,
- 专访黑客历史学家George Dyson
datamachine
on
20世纪最具威力的两项发明——核弹和计算机出自同一时代、同一群年青人。可是,与大名鼎鼎的曼哈顿计划(第二次世界大战中美国原子弹研究计划)相 比,计算机的起源显得默默无闻。出身计算机世家的历史学家George Dyson在其新书《图灵大教堂》(Turing’s Cathedral)中讲述了阿兰·图灵、约翰·冯·诺依曼等一帮子天才小子创造计算机及预见计算机未来
- 小学6年级英语单词背诵第一课
dcj3sjt126com
englishword
always 总是
rice 水稻,米饭
before 在...之前
live 生活,居住
usual 通常的
early 早的
begin 开始
month 月份
year 年
last 最后的
east 东方的
high 高的
far 远的
window 窗户
world 世界
than 比...更
- 在线IT教育和在线IT高端教育
dcj3sjt126com
教育
codecademy
http://www.codecademy.com codeschool
https://www.codeschool.com teamtreehouse
http://teamtreehouse.com lynda
http://www.lynda.com/ Coursera
https://www.coursera.
- Struts2 xml校验框架所定义的校验文件
蕃薯耀
Struts2 xml校验Struts2 xml校验框架Struts2校验
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 15:54:59 星期六
http://fa
- mac下安装rar和unrar命令
hanqunfeng
mac
1.下载:http://www.rarlab.com/download.htm 选择
RAR 5.21 for Mac OS X 2.解压下载后的文件 tar -zxvf rarosx-5.2.1.tar 3.cd rar sudo install -c -o $USER unrar /bin #输入当前用户登录密码 sudo install -c -o $USER rar
- 三种将list转换为map的方法
jackyrong
list
在本文中,介绍三种将list转换为map的方法:
1) 传统方法
假设有某个类如下
class Movie {
private Integer rank;
private String description;
public Movie(Integer rank, String des
- 年轻程序员需要学习的5大经验
lampcy
工作PHP程序员
在过去的7年半时间里,我带过的软件实习生超过一打,也看到过数以百计的学生和毕业生的档案。我发现很多事情他们都需要学习。或许你会说,我说的不就是某种特定的技术、算法、数学,或者其他特定形式的知识吗?没错,这的确是需要学习的,但却并不是最重要的事情。他们需要学习的最重要的东西是“自我规范”。这些规范就是:尽可能地写出最简洁的代码;如果代码后期会因为改动而变得凌乱不堪就得重构;尽量删除没用的代码,并添加
- 评“女孩遭野蛮引产致终身不育 60万赔偿款1分未得”医腐深入骨髓
nannan408
先来看南方网的一则报道:
再正常不过的结婚、生子,对于29岁的郑畅来说,却是一个永远也无法实现的梦想。从2010年到2015年,从24岁到29岁,一张张新旧不一的诊断书记录了她病情的同时,也清晰地记下了她人生的悲哀。
粗暴手术让人发寒
2010年7月,在酒店做服务员的郑畅发现自己怀孕了,可男朋友却联系不上。在没有和家人商量的情况下,她决定堕胎。
12月5日,
- 使用jQuery为input输入框绑定回车键事件 VS 为a标签绑定click事件
Everyday都不同
jspinput回车键绑定clickenter
假设如题所示的事件为同一个,必须先把该js函数抽离出来,该函数定义了监听的处理:
function search() {
//监听函数略......
}
为input框绑定回车事件,当用户在文本框中输入搜索关键字时,按回车键,即可触发search():
//回车绑定
$(".search").keydown(fun
- EXT学习记录
tntxia
ext
1. 准备
(1) 官网:http://www.sencha.com/
里面有源代码和API文档下载。
EXT的域名已经从www.extjs.com改成了www.sencha.com ,但extjs这个域名会自动转到sencha上。
(2)帮助文档:
想要查看EXT的官方文档的话,可以去这里h
- mybatis3的mapper文件报Referenced file contains errors
xingguangsixian
mybatis
最近使用mybatis.3.1.0时无意中碰到一个问题:
The errors below were detected when validating the file "mybatis-3-mapper.dtd" via the file "account-mapper.xml". In most cases these errors can be d