基于51单片机的两路数字电压表Protues仿真设计

目录

一、设计背景

1.1、数字电压表的发展历程  

1.2、课题的意义和目的

二、实现功能

三、仿真演示

四、部分程序展示


一、设计背景

1.1、数字电压表的发展历程  

       数字电压表简称DVM,它是采用数字化测量技术设计的电压表。从性能来看:数字电压表的发展从一九五二年美国NLS公司由四位电子管数字电压表精度千分之一到现在已经出现8位数字电压表。参数可测量直流电压、交流电压、电流、阻抗等。测量自动化程度不断提高,可以和计算机配合显示、计算结果、然后打印出来。目前世界上美国FLUKE公司,在直流和低频交流电量的校准领域居国际先进水平。例如该公司生产的“4700A”多功能校准器和“8505”危机数字多用电压表,可用8位显示,直流精度可达到±5/10-6,读书分辨力为0.1μV。带有A/D变换模式、数据输出接口形式IEEE-488。具有比率测量软件校准和有交流电阻、电流选件。还具有高精度电压校准器“5400A”、“5200A”、“5450A”等数字仪表,都是作为一级计量站和国家级计量站使用的标准仪表。还有英国的“7055”数字电压表采用脉冲调制技术。日本横河公司的“2501”型采用三次采样等等在不断的蓬勃发展。

        从发展过程来看:数字电压表自1952年问世以来,已有50年多年的发展史,大致经历了五代产品。第一代产品是20世纪50年代问世的电子管数字电压表,第二代产品属于20世纪60年代出现的晶体管数字电压表,第三带产品为20世纪70年代研制的中、小规模集成电路的数字电压表。今年来,国内外相继推出有大规模集成电路(LSI)或超大规模集成电路(VLSI)构成的数字电压表、智能数字电压表,分别属于第四代、第五代产品。它们不仅开创了电子测量的先河,更以高准确度、高可靠性、高分辨力、高性价比等优良特性而受到人民的青睐。

       数字电压表作为电压表的一个分支,在近五十年间得到巨大发展,构成数字电压表的核心器件已从早期的中小规模电路跨入到大规模ASIC(专用集成电路)阶段。数字电压表涉及的范围也从传统的测量扩展至自动控制、传感、通信等领域,展示了广阔的应用前景。

       传统电压表的设计思路主要分为:用电流计和电阻构成的电压表;用中小规模集成电路构成的电压表;用大规模ASIC(专用集成电路)构成的电压表。这几中电压表设计方式各有优势和缺点,分别适用于几种特定的应用环境,同时,也为很多新颖的电压表的设计所借鉴和依据。

       进入21世纪,随着信息技术一日千里的发展,电压表也必经历从单一测量向数据处理、自动控制等多功能过度的这一历程,特别是计算机技术的发展必将出现智能化技术。因此,把电压表和计算机技术相结合的智能化电压表就将成为21世纪的新课题。目前,数字化仪器与微处理器取得令人瞩目的进展,就其技术背景而言,一个内藏微处理器的仪表意味着计算机技术向仪器仪表的移植,它所具有的软件功能使仪器 呈现出有某种延伸,强化的作用。这相对于过去传统的、纯硬件的仪器来说是一种新的突破,其发展潜力十分巨大,这已为70年代以来仪表发展的历史所证实。概括起来,具有微处理器的仪表具有以下特点:①测量过程的软件控制对测量数据进行存储及运算的数据处理功能是仪表最突出的特点;②在仪器的测量过程中综合了软件控制及数据处理功能,使一机多用或仪器的多功能化易于实现,成为这类仪器的又一特点;③以其软件为主体的智能仪器不仅在使用方便、功能多样化等方面呈现很大的灵活性。

1.2、课题的意义和目的

        数字电压表是诸多数字化仪表的核心与基础。以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表(如:温度计,湿度计,酸度计,重量,厚度仪等),几乎覆盖了电子电工测量,工业测量,自动化仪表等各个领域。除此之外,数字电压还有着传统指针电压表无可比拟的优点:读数直观、准确,显示范围宽、分辨力高,转入阻抗高,功耗小、抗干扰强等[3]。因此 对数字电压表作全面深入的了解是很有必要的。但是传统的数字电压表设计通常以大规模ASIC(专用集成电路)为核心器件,并辅以少量中规模集成电路及显示器件构成,可是这种设计方法灵活性差,系统功能固定,难以更新扩展,不能满足日益发展的电子工业要求[6]。而应用微处理器(单片机)为核心单元的数字电压表,其灵活性高、系统功能扩展简单,性能稳定可靠。在这些背景下,设计一种以单片机为基础、结构简单、工作可靠、灵活性好的数字电压表是很有意义的。

二、实现功能

      本设计采用AT89C51芯片和ADC0809芯片来完成一个简易的数字电压表,能够对输入的0~5 V的模拟直流电压进行测量,并通过LCD1602液晶显示屏进行显示,测量误差约为0.02 V。该电压表的测量电路主要由三个模块组成:A/D转换模块、数据处理模块及显示控制模块。A/D转换主要由芯片ADC0809来完成,它负责把采集到的模拟量转换为相应的数字量再传送到数据处理模块。数据处理则由芯片AT89C51芯片来完成,其负责把ADC0809传送来的数字量经一定的数据处理,产生相应的显示码送到显示模块以百分数的形式显示,另外它还控制着ADC0809芯片的工作。

三、仿真演示

通道0实际电压值为2V,占比百分之40,实测电压值占比百分之39,误差为百分之1;通道1实际电压值为2.5V,占比百分之50,实测电压值占比百分之49,误差为百分之1;

基于51单片机的两路数字电压表Protues仿真设计_第1张图片

改变两通道的电压值,通道0实际电压值变为为4V,实测电压值占比百分之79,误差为百分之1;通道1实际电压值为1V,实测电压值占比百分之19,误差为百分之1;

基于51单片机的两路数字电压表Protues仿真设计_第2张图片

四、部分程序展示

#include "reg52.h" 
#include "intrins.h"
#include "LCD1602.h"

uint8 i;
fp32  volt0,volt1; 
uint8 getdata; 
uint8 dispbuf[8]={10,10,10,10,10,0,0,0};  //存放ad采集过来的值(只有最后3位有用)

uint8 table2[7]="CH0:  %";
uint8 table1[7]="CH1:  %";

sbit ST=P3^0; //是否选中该芯片
sbit OE=P3^1; //所存转换的值
sbit EOC=P3^2; //当EAC数据有效时,将转换数据送出
sbit CLK=P3^3; //给adc0809提供时钟

sbit Re1=P3^4;
sbit Add_A=P3^5;
sbit Add_B=P3^6;
sbit Add_C=P3^7;

void Timer0Init(void)
{  
	TMOD=0x12;//设置定时器0和1的工作方式  
	TH0=216; 
    TL0=216; //设置定时器0的初值为216(为adc0808提供时钟)
    ET0=1; //启用定时器0
    TR0=1;  //开定时器0  
	EA=1;    //开总中断
}

void Timer0Service(void) interrupt 1 using 0           //定时器0中断服务
{ 
  CLK=~CLK;  //给adc0809提供时钟
}

仿真源文件及源程序百度网盘链接:https://pan.baidu.com/s/1Brkqf2MvjgSEjD2cs0mCPw 
提取码:099h 

你可能感兴趣的:(51单片机,嵌入式硬件,单片机)