Transformer是Google在2017年提出的一种新型模型架构。它以自注意力机制取代传统的RNN和CNN对序列数据的建模,它在机器翻译、语言理解等任务上显示出强大的表示能力,目前已经成为自然语言处理领域的主流框架之一。主要特点有:
Transformer的基本结构包含N个相同的层(Layer)。每个层包含两个子层:
import os
import math
import time
import pandas as pd
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.utils.data import Dataset
from torch.utils.data.dataloader import DataLoader
from torch.utils.tensorboard import SummaryWriter
# 模型参数
@dataclass
class ModelConfig:
vocab_size: int = None
n_embed : int = None
n_hidden: int = None
max_seq_length: int = None
n_head: int = None
n_layer: int = None
GELU(Gaussian Error Linear Units)是BERT作者在论文中提出的一种新型激活函数,广泛应用于GPT系列的模型中,函数的定义如下:
G E L U ( x ) = x P ( X < = x ) = x Φ ( x ) = x 1 2 [ 1 + e r f ( x / 2 ) ] GELU(x) = xP(X <= x) = x\Phi(x)=x\frac{1}{2}[1+erf(x/\sqrt 2)] GELU(x)=xP(X<=x)=xΦ(x)=x21[1+erf(x/2)]
近似表示为:
G E L U ( x ) ≈ 0.5 x ( 1 + t a n h [ 2 / π ( x + 0.044715 x 3 ) ] ) = x σ ( 1.702 x ) GELU(x) \approx 0.5x(1 + tanh[\sqrt{2/ \pi} (x + 0.044715x^3)]) = x\sigma(1.702x) GELU(x)≈0.5x(1+tanh[2/π(x+0.044715x3)])=xσ(1.702x)
class NewGELU(nn.Module):
def forward(self, x):
return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
class CausalSelfAttention(nn.Module):
"""
A multi-head masked self-attention layer with a projection at the end.
It is possible to use torch.nn.MultiheadAttention here
but I am including an explicit implementation here
to show that there is nothing too scary here.
"""
def __init__(self, config):
super().__init__()
assert config.n_embed % config.n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = nn.Linear(config.n_embed, 3 * config.n_embed)
# output projection
self.c_proj = nn.Linear(config.n_embed, config.n_embed)
# causal mask to ensure that attention is only applied to the left in the input sequence
self.register_buffer("bias", torch.tril(torch.ones(config.max_seq_length, config.max_seq_length))
.view(1, 1, config.max_seq_length, config.max_seq_length))
self.n_head = config.n_head
self.n_embed = config.n_embed
def forward(self, x):
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embed)
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
q, k ,v = self.c_attn(x).split(self.n_embed, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.c_proj(y)
return y
class Block(nn.Module):
""" an unassuming Transformer block """
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embed)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embed)
self.mlp = nn.ModuleDict(dict(
c_fc = nn.Linear(config.n_embed, 4 * config.n_embed),
c_proj = nn.Linear(4 * config.n_embed, config.n_embed),
act = NewGELU(),
))
m = self.mlp
self.mlpf = lambda x: m.c_proj(m.act(m.c_fc(x))) # MLP forward
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlpf(self.ln_2(x))
return x
class Transformer(nn.Module):
""" Transformer Language Model, exactly as seen in GPT-2 """
def __init__(self, config):
super().__init__()
self.max_seq_length = config.max_seq_length
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embed),
wpe = nn.Embedding(config.max_seq_length, config.n_embed),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embed),
))
self.lm_head = nn.Linear(config.n_embed, config.vocab_size, bias=False)
# report number of parameters (note we don't count the decoder parameters in lm_head)
n_params = sum(p.numel() for p in self.transformer.parameters())
print("number of parameters: %.2fM" % (n_params/1e6,))
def get_max_seq_length(self):
return self.max_seq_length
def forward(self, idx, targets=None):
device = idx.device
b, t = idx.size()
assert t <= self.max_seq_length, f"Cannot forward sequence of length {t}, block size is only {self.max_seq_length}"
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) # shape (1, t)
# forward the GPT model itself
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embed)
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (1, t, n_embed)
x = tok_emb + pos_emb
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
# if we are given some desired targets also calculate the loss
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
return logits, loss
数据集来10k+中文外卖评价数据集:
data = pd.read_csv('./dataset/waimai_10k.csv')
data.dropna(subset='review',inplace=True)
data['review_length'] = data.review.apply(lambda x:len(x))
data.sample(5)
label | review | review_length | |
---|---|---|---|
551 | 1 | 没想到味道这么棒,以后我就多订,请多多关照! | 22 |
1054 | 1 | 真没传说中的那么好吃,也可能是因为我点的是猪肘卷饼的缘故吧。反正菜太少了,肉太多了,尤其是好... | 75 |
6688 | 0 | 我希望下次再送的时候,把饭拿稳了,我打开的时候都散了 | 26 |
9453 | 0 | 太!慢!了! | 6 |
5433 | 0 | 13:20多才送到,呵呵嗒,强烈要求自取!! | 22 |
语料统计信息:
data = data[data.review_length <=50] # 滤掉长度超过50的评论
words = data.review.tolist()
chars = sorted(list(set(''.join(words))))
max_word_length = max(len(w) for w in words)
print(f"number of examples: {len(words)}")
print(f"max word length: {max_word_length}")
print(f"size of vocabulary: {len(chars)}")
number of examples: 10796
max word length: 50
size of vocabulary: 2272
test_set_size = min(1000, int(len(words) * 0.1))
rp = torch.randperm(len(words)).tolist()
train_words = [words[i] for i in rp[:-test_set_size]]
test_words = [words[i] for i in rp[-test_set_size:]]
print(f"split up the dataset into {len(train_words)} training examples and {len(test_words)} test examples")
split up the dataset into 9796 training examples and 1000 test examples
class CharDataset(Dataset):
def __init__(self, words, chars, max_word_length):
self.words = words
self.chars = chars
self.max_word_length = max_word_length
# char-->index-->char
self.char2i = {ch:i+1 for i,ch in enumerate(chars)}
self.i2char = {i:s for s,i in self.char2i.items()}
def __len__(self):
return len(self.words)
def contains(self, word):
return word in self.words
def get_vocab_size(self):
return len(self.chars) + 1
def get_output_length(self):
return self.max_word_length + 1
def encode(self, word):
# char sequece ---> index sequence
ix = torch.tensor([self.char2i[w] for w in word], dtype=torch.long)
return ix
def decode(self, ix):
# index sequence ---> char sequence
word = ''.join(self.i2char[i] for i in ix)
return word
def __getitem__(self, idx):
word = self.words[idx]
ix = self.encode(word)
x = torch.zeros(self.max_word_length + 1, dtype=torch.long)
y = torch.zeros(self.max_word_length + 1, dtype=torch.long)
x[1:1+len(ix)] = ix
y[:len(ix)] = ix
y[len(ix)+1:] = -1 # index -1 will mask the loss
return x, y
class InfiniteDataLoader:
def __init__(self, dataset, **kwargs):
train_sampler = torch.utils.data.RandomSampler(dataset, replacement=True, num_samples=int(1e10))
self.train_loader = DataLoader(dataset, sampler=train_sampler, **kwargs)
self.data_iter = iter(self.train_loader)
def next(self):
try:
batch = next(self.data_iter)
except StopIteration: # this will technically only happen after 1e10 samples... (i.e. basically never)
self.data_iter = iter(self.train_loader)
batch = next(self.data_iter)
return batch
# 模型评估
@torch.inference_mode()
def evaluate(model, dataset, batch_size=10, max_batches=None):
model.eval()
loader = DataLoader(dataset, shuffle=True, batch_size=batch_size, num_workers=0)
losses = []
for i, batch in enumerate(loader):
batch = [t.to('cuda') for t in batch]
X, Y = batch
logits, loss = model(X, Y)
losses.append(loss.item())
if max_batches is not None and i >= max_batches:
break
mean_loss = torch.tensor(losses).mean().item()
model.train() # reset model back to training mode
return mean_loss
环境初始化:
torch.manual_seed(seed=12345)
torch.cuda.manual_seed_all(seed=12345)
work_dir = "./GPT2_log"
os.makedirs(work_dir, exist_ok=True)
writer = SummaryWriter(log_dir=work_dir)
模型初始化:
config = ModelConfig(vocab_size=len(chars)+1,
n_embed=128,
n_hidden=64,
max_seq_length=max_word_length+1,
n_head=4,
n_layer=4)
model = Transformer(config)
model.to('cuda')
number of parameters: 1.09M
Transformer(
(transformer): ModuleDict(
(wte): Embedding(2273, 128)
(wpe): Embedding(51, 128)
(h): ModuleList(
(0-3): 4 x Block(
(ln_1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(attn): CausalSelfAttention(
(c_attn): Linear(in_features=128, out_features=384, bias=True)
(c_proj): Linear(in_features=128, out_features=128, bias=True)
)
(ln_2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(mlp): ModuleDict(
(c_fc): Linear(in_features=128, out_features=512, bias=True)
(c_proj): Linear(in_features=512, out_features=128, bias=True)
(act): NewGELU()
)
)
)
(ln_f): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
)
(lm_head): Linear(in_features=128, out_features=2273, bias=False)
)
初始化数据:
train_dataset = CharDataset(train_words, chars, max_word_length)
test_dataset = CharDataset(test_words, chars, max_word_length)
train_dataset[0][0].shape, train_dataset[0][1].shape
(torch.Size([51]), torch.Size([51]))
Training:
# init optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-4, weight_decay=0.01, betas=(0.9, 0.99), eps=1e-8)
# init dataloader
batch_loader = InfiniteDataLoader(train_dataset, batch_size=256, pin_memory=True, num_workers=4)
# training loop
best_loss = None
step = 0
train_losses, test_losses = [],[]
while True:
t0 = time.time()
# get the next batch, ship to device, and unpack it to input and target
batch = batch_loader.next()
batch = [t.to('cuda') for t in batch]
X, Y = batch
# feed into the model
logits, loss = model(X, Y)
# calculate the gradient, update the weights
model.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
# wait for all CUDA work on the GPU to finish then calculate iteration time taken
torch.cuda.synchronize()
t1 = time.time()
# logging
if step % 1000 == 0:
print(f"step {step} | loss {loss.item():.4f} | step time {(t1-t0)*1000:.2f}ms")
# evaluate the model
if step > 0 and step % 100 == 0:
train_loss = evaluate(model, train_dataset, batch_size=100, max_batches=10)
test_loss = evaluate(model, test_dataset, batch_size=100, max_batches=10)
train_losses.append(train_loss)
test_losses.append(test_loss)
# save the model to disk if it has improved
if best_loss is None or test_loss < best_loss:
out_path = os.path.join(work_dir, "model.pt")
print(f"test loss {test_loss} is the best so far, saving model to {out_path}")
torch.save(model.state_dict(), out_path)
best_loss = test_loss
step += 1
# termination conditions
if step > 10100:
break
step 0 | loss 7.8996 | step time 424.90ms
test loss 4.594789028167725 is the best so far, saving model to ./GPT2_log/model.pt
test loss 3.9983901977539062 is the best so far, saving model to ./GPT2_log/model.pt
test loss 3.762165069580078 is the best so far, saving model to ./GPT2_log/model.pt
test loss 3.6443073749542236 is the best so far, saving model to ./GPT2_log/model.pt
test loss 3.5818755626678467 is the best so far, saving model to ./GPT2_log/model.pt
test loss 3.565037250518799 is the best so far, saving model to ./GPT2_log/model.pt
step 1000 | loss 2.4028 | step time 30.07ms
step 2000 | loss 1.1732 | step time 30.60ms
step 3000 | loss 0.7114 | step time 29.94ms
step 4000 | loss 0.5963 | step time 29.27ms
step 5000 | loss 0.5811 | step time 30.56ms
step 6000 | loss 0.5321 | step time 30.99ms
step 7000 | loss 0.5324 | step time 29.52ms
step 8000 | loss 0.5611 | step time 30.47ms
step 9000 | loss 0.5524 | step time 30.72ms
step 10000 | loss 0.5481 | step time 31.09ms
# laod save best model
model.load_state_dict(torch.load('./GPT2_log/model.pt'))
@torch.no_grad()
def generate(model, idx, max_new_tokens, temperature=1.0, do_sample=False, top_k=None):
for _ in range(max_new_tokens):
# forward the model to get the logits for the index in the sequence
logits, _ = model(idx)
# pluck the logits at the final step and scale by desired temperature
logits = logits[:,-1,:] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, top_k)
logits[logits < v[:, [-1]]] = -float('Inf')
# apply softmax to convert logits to (normalized) probabilities
probs = F.softmax(logits, dim=-1)
# either sample from the distribution or take the most likely element
if do_sample:
idx_next = torch.multinomial(probs, num_samples=1)
else:
_, idx_next = torch.topk(probs, k=1, dim=-1)
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next), dim=-1)
return idx
def print_samples(num=13):
# inital 0 tokens
X_init = torch.zeros((num, 1), dtype=torch.long).to('cuda')
steps = train_dataset.get_output_length() - 1 # -1 because we already start with token (index 0)
X_samp = generate(model, X_init, steps, top_k=None, do_sample=True).to('cuda')
new_samples = []
for i in range(X_samp.size(0)):
# get the i'th row of sampled integers, as python list
row = X_samp[i, 1:].tolist() # note: we need to crop out the first token
# token 0 is the token, so we crop the output sequence at that point
crop_index = row.index(0) if 0 in row else len(row)
row = row[:crop_index]
word_samp = train_dataset.decode(row)
new_samples.append(word_samp)
return new_samples
print_samples(num=10)
['送餐很快,师傅辛苦了,味道非常好,服务挺好!',
'还不错,有点辣',
'花。不好吃,送餐单人是不长,肘子皮白粥包装好。很细心酱服务态度,很值!!!',
'一如既往的神子还不错,真心不了',
'师傅洒了快',
'估汁买的太大了,我实在哪里的一道是80分,袖蹄放只有股卷饼腻。没夏怪卷饼,怎么好吃完成。',
'一个半小时!现在外卖来了!太慢了已送到50多啊!好差辣椒腐柳,也不是虑就不怎么怀疑址,。',
'忘餐厅到这次不放挺热的',
'骑士态度很好,门给送餐员但饮料。这种纯)目少',
'好吃好吃,味道也没有!']