- Java NLP炼金术:从词袋到深度学习,构建AI时代的语言魔方
墨夶
Java学习资料人工智能java自然语言处理
一、JavaNLP的“三剑客”:框架与工具链1.1ApacheOpenNLP:传统NLP的“瑞士军刀”目标:用词袋模型实现文本分类与实体识别代码实战:文档分类器的“炼成术”//OpenNLP文档分类器(基于词袋模型)importopennlp.tools.doccat.*;importopennlp.tools.util.*;publicclassDocumentClassifier{//训练模型
- Java代码异味终结者:三大神器实战拆解与深度优化
墨夶
Java学习资料java开发语言
2025年某电商平台因代码异味导致的崩溃事件,让业界震惊——重复代码占项目总量的32%,单个类方法行数超1500行,最终导致日活下降40%。本文通过代码异味检测工具,带你:1秒定位重复代码与魔法数字0误报率识别God类与空方法自动化修复代码异味,减少80%人工检查一、代码异味的科学分类与检测工具选择1.1代码异味的5大死亡陷阱类别典型症状危害等级重复代码相同逻辑在3处以上重复★★★★★God类单类
- 系统学习Python——并发模型和异步编程:进程、线程和GIL
分类目录:《系统学习Python》总目录在文章《并发模型和异步编程:基础知识》我们简单介绍了Python中的进程、线程和协程。本文就着重介绍Python中的进程、线程和GIL的关系。Python解释器的每个实例都是一个进程。使用multiprocessing或concurrent.futures库可以启动额外的Python进程。Python的subprocess库用于启动运行外部程序(不管使用何种
- JavaScript 树形菜单总结
Auscy
microsoft
树形菜单是前端开发中常见的交互组件,用于展示具有层级关系的数据(如文件目录、分类列表、组织架构等)。以下从核心概念、实现方式、常见功能及优化方向等方面进行总结。一、核心概念层级结构:数据以父子嵌套形式存在,如{id:1,children:[{id:2}]}。节点:树形结构的基本单元,包含自身信息及子节点(若有)。展开/折叠:子节点的显示与隐藏切换,是树形菜单的核心交互。递归渲染:因数据层级不固定,
- 计算机网络技术
CZZDg
计算机网络
目录一.网络概述1.网络的概念2.网络发展是3.网络的四要素4.网络功能5.网络类型6.网络协议与标准7.网络中常见的概念8.网络拓补结构二.网络模型1.分层思想2.OSI七层模型3.TCP/IP五层模型4.数据的封装与解封装过程三.IP地址1.进制转换2.IP地址定义3.IP地址组成成分4.IP地址分类5.地址划分6、相关概念一.网络概述1.网络的概念两个主机通过传输介质和通信协议实现通信和资源
- UNIX域套接字
1、UNIX域套接字的定义UNIX域套接字是进程间通信(IPC)的一种方式,不涉及网络协议栈,因此在同一台主机上的通信中,它比基于TCP/IP协议的网络套接字更快速、更高效。2、UNIX域套接字的分类字节流套接字(SOCK_STREAM):提供面向连接的、可靠的数据传输服务。数据报套接字(SOCK_DGRAM):提供无连接的数据传输服务,数据以独立的数据报形式传输。3、UNIX套接字与TCP/IP
- 数据分析常用指标名词解释及计算公式
走过冬季
学习笔记数据分析大数据
数据分析中有大量常用指标,它们帮助我们量化业务表现、用户行为、产品健康度等。下面是一些核心指标的名词解释及计算方式,按常见类别分类:一、流量与用户规模指标页面浏览量名词解释:用户访问网站或应用时,每次加载或刷新一个页面就算一次PV。它衡量的是页面被打开的总次数。计算方式:PV=∑(所有页面被加载的次数)(通常由埋点或日志直接统计)独立访客数名词解释:在特定时间范围内(如一天、一周、一月),访问网站
- V少JS基础班之第五弹
V少在逆向
JS基础班javascript开发语言ecmascript
文章目录一、前言二、本节涉及知识点三、重点内容1-函数的定义2-函数的构成1.函数参数详解1)参数个数不固定2)默认参数3)arguments对象(类数组)4)剩余参数(Rest参数)5)函数参数是按值传递的6)解构参数传递7)参数校验技巧(JavaScript没有类型限制,需要手动校验)2.函数返回值详解3-函数的分类1-函数声明式:2-函数表达式:3-箭头函数:4-构造函数:5-IIFE:6-
- Python爬虫实战:利用最新技术爬取B站直播数据
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言html百度
1.B站直播数据爬取概述B站(哔哩哔哩)是中国最大的年轻人文化社区和视频平台之一,其直播业务近年来发展迅速。爬取B站直播数据可以帮助我们分析直播市场趋势、热门主播排行、观众喜好等有价值的信息。常见的B站直播数据类型包括:直播间基本信息(标题、分类、主播信息)实时观看人数与弹幕数据礼物打赏数据直播历史记录分区热门直播数据本文将重点介绍如何获取直播间基本信息和分区热门直播数据。2.环境准备与工具选择2
- 目标检测(object detection)
加油吧zkf
目标检测目标检测人工智能计算机视觉
目标检测作为计算机视觉的核心技术,在自动驾驶、安防监控、医疗影像等领域发挥着不可替代的作用。本文将系统讲解目标检测的概念、原理、主流模型、常见数据集及应用场景,帮助读者构建对这一技术的完整认知。一、目标检测的核心概念目标检测(ObjectDetection)是指在图像或视频中自动定位并识别出所有感兴趣的目标的技术。它需要解决两个核心问题:分类(Classification):确定图像中每个目标的类
- 不同行业的 AI 数据安全与合规实践:7 大核心要点全解析
观熵
人工智能DeepSeek私有化部署
不同行业的AI数据安全与合规实践:7大核心要点全解析关键词AI数据安全、行业合规、私有化部署、数据分类分级、国产大模型、隐私保护、DeepSeek部署摘要随着国产大模型在金融、医疗、政务、教育等关键领域的深入部署,AI系统对数据安全与行业合规提出了更高要求。本文结合DeepSeek私有化部署实战,系统梳理当前各行业主流的数据安全合规标准与落地策略,从数据分类分级、访问控制、审计追踪到敏感信息识别与
- STM32 ADC详解
月入鱼饵
stm32嵌入式硬件单片机
本文介绍stm32ADC的使用,本文较长,可以配合目录跳转到需要的地方阅读。ADC转换原理本文重点在于STM32的ADC的使用,介绍ADC转换原理是为了更好理解STM32中关于ADC的配置,所以这里只是简单介绍一下ADC的转换原理,想详细了解ADC的转换原理可以看看看完这篇文章,终于搞懂了ADC原理及分类!和ADC基本工作原理-CSDN。简单来说,模拟信号输入进来,经过低通滤波操作预处理信号之后,
- 深度学习图像分类数据集—桃子识别分类
AI街潜水的八角
深度学习图像数据集深度学习分类人工智能
该数据集为图像分类数据集,适用于ResNet、VGG等卷积神经网络,SENet、CBAM等注意力机制相关算法,VisionTransformer等Transformer相关算法。数据集信息介绍:桃子识别分类:['B1','M2','R0','S3']训练数据集总共有6637张图片,每个文件夹单独放一种数据各子文件夹图片统计:·B1:1601张图片·M2:1800张图片·R0:1601张图片·S3:
- c++中迭代器的本质
三月微风
c++开发语言
C++迭代器的本质与实现原理迭代器是C++标准模板库(STL)的核心组件之一,它作为容器与算法之间的桥梁,提供了统一访问容器元素的方式。下面从多个维度深入解析迭代器的本质特性。一、迭代器的基本定义与分类迭代器的本质迭代器是一种行为类似指针的对象,用于遍历和操作容器中的元素。它提供了一种统一的方式来访问不同容器中的元素,而无需关心容器的具体实现细节。标准分类体系C++标准定义了5种迭代器类型,按功能
- udev 规则文件命名规范
奇妙之二进制
#嵌入式/Linuxlinux网络运维
文章目录udev规则文件名的含义、规范及数字开头的原因一、udev规则文件的基本概念二、udev规则文件名的规范与含义1.文件名格式规范2.名称各部分的含义3.文件扫描路径三、为何规则文件名通常以数字开头?1.执行顺序的精确控制2.便于分类和管理3.兼容性与标准化四、示例与实践建议1.常见规则文件示例2.自定义规则命名建议五、总结udev规则文件名的含义、规范及数字开头的原因一、udev规则文件的
- Ollama平台里最流行的embedding模型: nomic-embed-text 模型介绍和实践
skywalk8163
人工智能embedding人工智能服务器
nomic-embed-text模型介绍nomic-embed-text是一个基于SentenceTransformers库的句子嵌入模型,专门用于特征提取和句子相似度计算。该模型在多个任务上表现出色,特别是在分类、检索和聚类任务中。其核心优势在于能够生成高质量的句子嵌入,这些嵌入在语义上非常接近,从而在相似度计算和分类任务中表现优异。之所以选用这个模型,是因为在Ollama网站查找这个模型,发现
- Flink 2.0 DataStream算子全景
Edingbrugh.南空
大数据flinkflink人工智能
在实时流处理中,ApacheFlink的DataStreamAPI算子是构建流处理pipeline的基础单元。本文基于Flink2.0,聚焦算子的核心概念、分类及高级特性。一、算子核心概念:流处理的"原子操作1.数据流拓扑(StreamTopology)每个Flink应用可抽象为有向无环图(DAG),由源节点(Source)、算子节点(Operator)和汇节点(Sink)构成,算子通过数据流(S
- 财政业务知识库目录分类实践
alankuo
人工智能
财政业务知识库的目录分类是实现知识有序管理、高效检索和精准应用的核心环节,需结合财政业务的专业性、系统性和动态性,兼顾业务逻辑、用户需求和管理实践。以下从分类原则、核心框架、实践要点三个方面,结合财政业务特点展开具体实践说明。一、财政业务知识库目录分类的核心原则在实践中,目录分类需遵循以下原则,确保分类逻辑清晰、实用高效:业务关联性:以财政核心业务流程和管理领域为基础,确保分类与实际工作场景紧密贴
- 微信小程序开发:从漫画阅读到商业变现
永远的12
本文还有配套的精品资源,点击获取简介:微信小程序作为一种轻量级应用平台,在无需下载安装的情况下提供便捷服务,尤其在漫画阅读领域得到广泛应用。本文介绍了微信小程序的基础开发框架,包括WXML、WXSS和JavaScript的使用,以及漫画小程序的核心功能设计,如漫画分类、搜索、详情展示、阅读模式等。同时,探讨了在小程序中加入广告ID以实现商业变现,包括广告组件的集成和广告政策的遵守。最后,强调了漫画
- 【一文了解】C#基础-集合
目录集合1.集合分类1.1.非泛型集合1.2.泛型集合1)列表(List)2)字典(Dictionary)3)队列(Queue)4)栈(Stack)5)哈希集合(HashSet)2.集合的常见操作3.区分泛型集合与非泛型集合3.1.非泛型集合1)优点2)缺点3.2.泛型集合1)优点2)缺点总结本篇文章来学习一下集合,C#集合主要分为非泛型集合与泛型集合。集合集合(Collection)是一种用于存
- C#集合:从基础到进阶的全面解析
阿蒙Armon
C#继续学习c#windowslinux
C#集合:从基础到进阶的全面解析在C#编程中,集合是处理数据集合的核心工具。无论是存储一组对象、实现缓存机制,还是处理复杂的数据结构,都离不开集合的灵活运用。本文将全面深入地探讨C#集合体系,从基础概念到高级技巧,帮助开发者掌握集合的精髓,写出更高效、更优雅的代码。一、集合概述与分类C#集合框架是.NET类库的重要组成部分,它提供了一系列用于存储和操作数据的类和接口。与数组相比,集合具有动态扩容、
- 短剧小程序开发全攻略:从0到1打造爆款内容平台
weixin_lynhgworld
小程序短剧
核心内容:行业趋势分析:短剧市场年增长率超300%,用户规模突破5亿,抖音、快手等平台加速布局。小程序成为短剧分发核心渠道:轻量化、低成本、社交裂变优势显著。开发核心功能模块:内容管理:支持多格式上传、分集管理、标签分类。播放体验优化:弹幕互动、倍速播放、清晰度切换、离线缓存。付费系统:单集付费、会员订阅、广告解锁等多元化盈利模式。社交裂变:分享奖励、邀请排行榜、拼团观影功能。技术实现难点:视频流
- 一文读懂HarmonyOS知识地图,开启鸿蒙开发新征程
大雨淅淅
#HarmonyOS开发harmonyos华为
目录一、HarmonyOS知识地图是什么?二、HarmonyOS基础概念速览(一)起源与发展(二)核心特性(三)技术架构剖析1.内核层2.系统服务层3.框架层4.应用层三、HarmonyOS知识地图板块解读(一)开发基础知识1.应用程序包2.应用配置文件3.资源分类与访问4.ArkTS语言基础(二)UI开发知识1.方舟开发框架(ArkUI)2.布局与组件3.动画与交互(三)应用模型与能力1.Abi
- 华为L1-L6流程体系核心框架
jmoych
华为大数据数据库
最近项目上讨论流程体系比较多,结合前面笔者发布的关于流程的文章,今天将华为的L1-L6流程体系简单分享一下,该体系是企业级流程管理的核心框架,通过分层设计实现战略到执行的垂直贯通。想获取完整资料的朋友,可加入知识星球,会员可无限制下载所有资料。流程分类框架体系设计应该梳理到L5还是L6?面向离散制造企业复杂业务,流程体系建设覆盖从L1到L5/L6的全层级框架?以下从架构设计、功能定位、层级关系三个
- 全网最全100道C语言高频经典面试题及答案解析:C语言程序员面试题库分类总结
猿享天开
学懂C语言-C语言从入门到精通c语言c++面试
前言在计算科学领域,C语言犹如一座横跨硬件与软件的桥梁——其简洁的语法背后,承载着操作系统、数据库、嵌入式系统等基础软件的运行命脉。当开发者面对大厂面试中"用户态与内核态切换的开销量化"或"自旋锁在NUMA架构下的性能陷阱"等深度问题时,仅凭教科书知识往往难以应对。本文正是为解决这一痛点而生。我们摒弃传统面试题集的简单罗列模式,精选100个直指系统编程本质的问题,每个案例均包含:工业级场景还原:基
- SQL 索引与日志知识点详解及练习题
索引和日志在数据库的高效运行和数据安全中扮演着重要角色。下面我们详细梳理索引和日志的相关知识,并通过练习题加深理解。一、知识点梳理(一)索引基本概念:索引是为了加速查询的数据结构,其数据结构为B+树。B代表Balance(平衡),数据保存在叶子结点中。分类主键索引:唯一标识一行,不允许为空,一张表只能有一个主键。唯一索引:标识一行,允许为空,一张表可以有多个唯一索引。普通索引:允许重复和空值。联合
- android mvvm官方demo,Android mvvm架构demo(DataBinding+LiveData+ViewModel+ Repository)
1.实现效果实现页面加载Bing每日一图的功能2.项目结构image(忽略没有按分类创建).png3.实现过程1.注入依赖//ViewModel与LiveDataimplementation"android.arch.lifecycle:extensions:1.1.1"//图片加载implementation'com.github.bumptech.glide:glide:4.9.0'//网络请
- CNN 猫狗识别:从理论到实战的深度解析
爱熬夜的小古
cnn深度学习人工智能
在计算机视觉领域,卷积神经网络(ConvolutionalNeuralNetwork,CNN)凭借其强大的特征提取和模式识别能力,成为图像分类任务的主流技术。猫狗识别作为经典的图像分类问题,不仅能帮助我们理解CNN的工作原理,还能为实际应用提供技术支持。本文将深入探讨CNN在猫狗识别中的应用,从理论基础到实战代码,带你全面掌握这项技术。一、CNN基础理论概述(一)CNN的核心组件卷积层:是CNN的
- 机器视觉在OCR(字符识别)检测中的应用
目前,对印刷品的检测工作一般采用人工方法进行质量检测,然后再由工作人员将成品和次品进行分类堆放。这样一来,不仅增加了工作人员的劳动强度,而且检测质量也难以得到保障。其次,则是效率低下,浪费时间成本。印品质量自动检测系统满足印刷企业对于产品质量控制的需求。系统采用自主研发的表面缺陷检测、色彩测量、快速建模等核心算法,广泛适用于包装印刷、标签印刷、商业印刷质量在线检测和印后终检。机器视觉用于印刷、包装
- SPGAN: Siamese projection Generative Adversarial Networks
这张生成的图像能检测吗
优质GAN模型训练自己的数据集人工智能生成对抗网络计算机视觉深度学习神经网络算法
简介简介:该论文针对传统GANs中鉴别器采用硬边际分类导致的误分类问题,提出了基于Siameseprojection网络的SPGAN方法。主要创新点包括:(1)设计Siameseprojection网络来测量特征相似性;(2)提出相似特征对抗学习框架,将相似性测量融入生成器和鉴别器的损失函数;(3)通过相似特征对抗学习,鉴别器能最大化真实图像和生成图像特征的差异性,生成器能合成包含更多真实图像特征
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,