基础海鸥优化算法的具体原理参考,我的博客:https://blog.csdn.net/u011835903/article/details/107535864
在 SOA 中, 海鸥个体的迁移行为是算法的一种重要操作, 通过引人一个参数 A A A 来控制海鸥个体位置, 避免海鸥个体在 飞行寻优过程中与其他相邻个体发生碰撞, 不产生重复的位 置。因此,参数 A A A 在 S O A \mathrm{SOA} SOA 搜索过程中对平衡算法的勘探和开 采能力起重要作用。然而, 从式 (2) 可以看出, 参数 A A A 的值随 迭代次数增加从 f c f_c fc 线性递减到 0 。一般来说, f c f_c fc 的取值为 2 , 即 在 SOA 迭代过程中 A A A 的值由 2 线性减少至 0 。
在利用 S O A \mathrm{SOA} SOA 解决优化问题中, 其搜索过程非常复杂且呈 现出一个非线性下降趋势。同时, 待求问题也需要算法的探索 性和开发性行为发生非线性变化, 以避免局部最优解。若控制 参数 A A A 纯粹地以线性递减的方式模拟海鸥群体的迁移过程, 就会降低 S O A \mathrm{SOA} SOA 的寻优搜索能力。因此, 本文提出一种基于倒 S S S 型函数的非线性递减控制参数 A A A 策略, 其数学表达式为
A = f c , max − ( f c , max − f c , min ) × 1 1 + e η − μ (12) A=f_{c, \text { max }}-\left(f_{c, \text { max }}-f_{c, \text { min }}\right) \times \frac{1}{1+\mathrm{e}^{\eta-\mu}}\tag{12} A=fc, max −(fc, max −fc, min )×1+eη−μ1(12)
其中: f c , max f_{c, \text { max }} fc, max 和 f c , min f_{c, \text { min }} fc, min 分别为频率控制参数 f c f_c fc 的最大值和最小值; η \eta η 和 μ \mu μ 均为常数。从式 (12) 可知, 在 SOA 的寻优过程中, 参数 A A A 的值以非线性方式进行递减可增强算法的全局搜索能力, 同 时既能避开海鸥个体之间的位置重叠, 也可在全局探索和局部 开发能力上获得一个较好的平衡。
在算法搜索后期,所有海鸥个体均向当前群体中最优个体所在区域靠拢, 导致群体多样性损失, 如果当前最优个体不是 全局最优解, 则算法陷人局部最优, 这是群体智能优化算法的 固有缺点。为了克服这个缺点, 研究者在群体智能优化算法中 引人许多策略如变异算子、反向学习、Lévy 飞行、透镜成像学 习、小孔成像学习等。翻筋斗受食是蝠鲼在捕食时最有效的一 种方式, 当找到食物源时, 它们会做一系列向后翻筋斗动作, 围 绕浮游生物 (猎物) 旋转, 将其吸引到自己身边。受这种现象 启发, Zhao 等人 提出了一种新型的翻筋斗受食策略用于群 体智能优化算法中, 原理实现如下: 在这种策略中, 猎物的位置 被视为一个支点, 每只蝠鲼都倾向于围绕枢轴和翻筋斗来回游 动到一个新的位置, 其数学模型为
X ( t + 1 ) = X ( t ) + S ⋅ ( r 1 ⋅ X b e s t − r 2 ⋅ X ( t ) ) (13) X(t+1)=X(t)+S \cdot\left(r_1 \cdot X_{b e s t}-r_2 \cdot X(t)\right) \tag{13} X(t+1)=X(t)+S⋅(r1⋅Xbest−r2⋅X(t))(13)
其中: X X X 为蝠鲼个体位置; X best X_{\text {best }} Xbest 是当前全局最优个体位置; S S S 称 为空翻因子; r 1 r_1 r1 和 r 2 r_2 r2 分别是 [ 0 , 1 ] [0,1] [0,1] 的随机数。
为了降低 S O A \mathrm{SOA} SOA 在搜索后期陷人局部最优的概率, 将蝠鲼 翻筋斗受食策略引人到 SOA 中, 其数学表达式为
P s ( t + 1 ) = P s ( t ) + S ⋅ ( r 1 ⋅ P b s − r 2 ⋅ P s ( t ) ) (14) P_s(t+1)=P_s(t)+S \cdot\left(r_1 \cdot P_{b s}-r_2 \cdot P_s(t)\right)\tag{14} Ps(t+1)=Ps(t)+S⋅(r1⋅Pbs−r2⋅Ps(t))(14)
其中: 空翻因子 S = 2 S=2 S=2 。
[1]徐明,龙文,羊洋.用于函数优化和特征选择的翻筋斗觅食海鸥优化算法[J].计算机应用研究,2022,39(12):3639-3643+3650.DOI:10.19734/j.issn.1001-3695.2022.05.0224.