OSI七层协议包括:物理层,数据链路层,网络层,运输层,会话层,表示层, 应用层
TCP/IP五层协议包括:物理层,数据链路层,网络层,运输层,应用层
主要解决两台物理机之间的通信,通过二进制比特流的传输来实现,二进制数据表现为电流电压上的强弱,到达目的地再转化为二进制机器码。网卡、集线器工作在这一层。
在不可靠的物理介质上提供可靠的传输,接收来自物理层的位流形式的数据,并封装成帧,传送到上一层;同样,也将来自上层的数据帧,拆装为位流形式的数据转发到物理层。这一层在物理层提供的比特流的基础上,通过差错控制、流量控制方法,使有差错的物理线路变为无差错的数据链路。提供物理地址寻址功能。交换机工作在这一层。
将网络地址翻译成对应的物理地址,并决定如何将数据从发送方路由到接收方,通过路由选择算法为分组通过通信子网选择最佳路径。路由器工作在这一层。
传输层提供了进程间的逻辑通信,传输层向高层用户屏蔽了下面网络层的核心细节,使应用程序看起来像是在两个传输层实体之间有一条端到端的逻辑通信信道。
建立会话:身份验证,权限鉴定等;
保持会话:对该会话进行维护,在会话维持期间两者可以随时使用这条会话传输局;
断开会话:当应用程序或应用层规定的超时时间到期后,OSI会话层才会释放这条会话。
对数据格式进行编译,对收到或发出的数据根据应用层的特征进行处理,如处理为文字、图片、音频、视频、文档等,还可以对压缩文件进行解压缩、对加密文件进行解密等。
提供应用层协议,如HTTP协议,FTP协议等等,方便应用程序之间进行通信。
TCP作为面向流的协议,提供可靠的、面向连接的运输服务,并且提供点对点通信
UDP作为面向报文的协议,不提供可靠交付,并且不需要连接,不仅仅对点对点,也支持多播和广播
TCP有三次握手建立连接,四次挥手关闭连接的机制。
除此之外还有滑动窗口和拥塞控制算法。最最关键的是还保留超时重传的机制。
对于每份报文也存在校验,保证每份报文可靠性。
UDP面向数据报无连接的,数据报发出去,就不保留数据备份了。
仅仅在IP数据报头部加入校验和复用。
UDP没有服务器和客户端的概念。
UDP报文过长的话是交给IP切成小段,如果某段报废报文就废了。
TCP是面向流协议,发送的单位是字节流,因此会将多个小尺寸数据被封装在一个tcp报文中发出去的可能性。
可以简单的理解成客户端调用了两次send,服务器端一个recv就把信息都读出来了。
固定发送信息长度,或在两个信息之间加入分隔符。
滑动窗口是传输层进行流量控制的一种措施,接收方通过通告发
送方自己的窗口大小,从而控制发送方的发送速度,防止发送方发送速度过快而导致自己被淹没。
拥塞是指一个或者多个交换点的数据报超载,TCP又会有重传机制,导致过载。
为了防止拥塞窗口cwnd增长过大引起网络拥塞,还需要设置一个慢开始门限ssthresh状态变量.
当cwnd < ssthresh 时,使用慢开始算法。
当cwnd > ssthresh 时,停止使用慢开始算法而改用拥塞避免算法。
当cwnd = ssthresh 时,即可使用慢开始算法,也可使用拥塞避免算法。
慢开始:由小到大逐渐增加拥塞窗口的大小,每接一次报文,cwnd指数增加。
拥塞避免:cwnd缓慢地增大,即每经过一个往返时间RTT就把发送方的拥塞窗口cwnd加1。
快恢复之前的策略:发送方判断网络出现拥塞,就把ssthresh设置为出现拥塞时发送方窗口值的一半,继续执行慢开始,之后进行拥塞避免。
快恢复:发送方判断网络出现拥塞,就把ssthresh设置为出现拥塞时发送方窗口值的一半,并把cwnd设置为ssthresh的一半,之后进行拥塞避免。
如果在超时重传定时器溢出之前,接收到连续的三个重复冗余ACK,发送端便知晓哪个报文段在传输过程中丢失了,于是重发该报文段,不需要等待超时重传定时器溢出再发送该报文。
不行。TCP进行可靠传输的关键就在于维护一个序列号,三次握手的过程即是通信双方相互告知序列号起始值, 并确认对方已经收到了序列号起始值。
如果只是两次握手, 至多只有客户端的起始序列号能被确认, 服务器端的序列号则得不到确认。
TCP握手中,当服务器处于SYN_RCVD 状态,服务器会把此种状态下请求连接放在一个队列里,该队列称为半连接队列。
SYN攻击即利用TCP协议缺陷,通过发送大量的半连接请求,占用半连接队列,耗费CPU和内存资源。
优化方式:
主要原因是当服务端收到客户端的 FIN 数据包后,服务端可能还有数据没发完,不会立即close。
所以服务端会先将 ACK 发过去告诉客户端我收到你的断开请求了,但请再给我一点时间,这段时间用来发送剩下的数据报文,发完之后再将 FIN 包发给客户端表示现在可以断了。之后客户端需要收到 FIN 包后发送 ACK 确认断开信息给服务端。
MSL即报文最大生存时间。设置2MSL可以保证上一次连接的报文已经在网络中消失,不会出现与新TCP连接报文冲突的情况。
DNS协议是基于UDP的应用层协议,它的功能是根据用户输入的域名,解析出该域名对应的IP地址,从而给客户端进行访问。
1、客户机发出查询请求,在本地计算机缓存查找,若没有找到,就会将请求发送给dns服务器
2、本地dns服务器会在自己的区域里面查找,找到即根据此记录进行解析,若没有找到,就会在本地的缓存里面查找
3、本地服务器没有找到客户机查询的信息,就会将此请求发送到根域名dns服务器
4、根域名服务器解析客户机请求的根域部分,它把包含的下一级的dns服务器的地址返回到客户机的dns服务器地址
5、客户机的dns服务器根据返回的信息接着访问下一级的dns服务器
6、这样递归的方法一级一级接近查询的目标,最后在有目标域名的服务器上面得到相应的IP信息
7、客户机的本地的dns服务器会将查询结果返回给我们的客户机
8、客户机根据得到的ip信息访问目标主机,完成解析过程
http协议是超文本传输协议。它是基于TCP协议的应用层传输协议,即客户端和服务端进行数据传输的一种规则。该协议本身HTTP 是一种无状态的协议。
HTTP 协议本身是无状态的,为了使其能处理更加复杂的逻辑,HTTP/1.1 引入 Cookie 来保存状态信息。
Cookie是由服务端产生的,再发送给客户端保存,当客户端再次访问的时候,服务器可根据cookie辨识客户端是哪个,以此可以做个性化推送,免账号密码登录等等。
session用于标记特定客户端信息,存在在服务器的一个文件里。
一般客户端带Cookie对服务器进行访问,可通过cookie中的session id从整个session中查询到服务器记录的关于客户端的信息。
1XX:接收的信息正在处理
2XX:请求正常处理完毕
3XX:重定向
4XX:客户端错误
5XX:服务端错误
常见错误码:
301:永久重定向
302:临时重定向
304:资源没修改,用之前缓存就行
400:客户端请求的报文有错误
403:表示服务器禁止访问资源
404:表示请求的资源在服务器上不存在或未找到
转发是服务器行为。服务器直接向目标地址访问URL,将相应内容读取之后发给浏览器,用户浏览器地址栏URL不变,转发页面和转发到的页面可以共享request里面的数据。
重定向是利用服务器返回的状态码来实现的,如果服务器返回301或者302,浏览器收到新的消息后自动跳转到新的网址重新请求资源。用户的地址栏url会发生改变,而且不能共享数据。
规定了请求头和请求尾,响应头和响应尾(get post)
每一个请求都是一个单独的连接,做不到连接的复用
HTTP1.1默认开启长连接,在一个TCP连接上可以传送多个HTTP请求和响应。使用 TCP 长连接的方式改善了 HTTP/1.0 短连接造成的性能开销。
支持管道(pipeline)网络传输,只要第一个请求发出去了,不必等其回来,就可以发第二个请求出去,可以减少整体的响应时间。
服务端无法主动push
HTTP中的长连接短连接指HTTP底层TCP的连接。
短连接: 客户端与服务器进行一次HTTP连接操作,就进行一次TCP连接,连接结束TCP关闭连接。
长连接:如果HTTP头部带有参数keep-alive,即开启长连接网页完成打开后,底层用于传输数据的TCP连接不会直接关闭,会根据服务器设置的保持时间保持连接,保持时间过后连接关闭。
提出多路复用。多路复用前,文件时串行传输的,请求a文件,b文件只能等待,并且连接数过多。引入多路复用,a文件b文件可以同时传输。
引入了二进制数据帧。其中帧对数据进行顺序标识,有了序列id,服务器就可以进行并行传输数据。
http所有传输的内容都是明文,并且客户端和服务器端都无法验证对方的身份。
https具有安全性的ssl加密传输协议,加密采用对称加密,
https协议需要到ca申请证书,一般免费证书很少,需要交费。
SSL全称为Secure Sockets Layer即安全套接层,其继任为TLSTransport Layer Security传输层安全协议,均用于在传输层为数据通讯提供安全支持。
可以将HTTPS协议简单理解为HTTP协议+TLS/SSL
Get:指定资源请求数据,刷新无害,Get请求的数据会附加到URL中,传输数据的大小受到url的限制。
Post:向指定资源提交要被处理的数据。刷新会使数据会被重复提交。post在发送数据前会先将请求头发送给服务器进行确认,然后才真正发送数据。
一般HTTP协议里并不限制参数大小限制。但一般由于get请求是直接附加到地址栏里面的,由于浏览器地址栏有长度限制,因此使GET请求在浏览器实现层面上看会有长度限制。
REST API全称为表述性状态转移(Representational State Transfer,REST)即利用HTTP中get、post、put、delete以及其他的HTTP方法构成REST中数据资源的增删改查操作:
学习计算机网络时我们一般采用折中的办法,也就是中和 OSI 和 TCP/IP 的优点,采用一种只有五层协议的体系结构,这样既简洁又能将概念阐述清楚。
结合互联网的情况,自上而下地,非常简要的介绍一下各层的作用。
应用层(application-layer)的任务是通过应用进程间的交互来完成特定网络应用。应用层协议定义的是应用进程(进程:主机中正在运行的程序)间的通信和交互的规则。对于不同的网络应用需要不同的应用层协议。在互联网中应用层协议很多,如域名系统DNS,支持万维网应用的 HTTP协议,支持电子邮件的 SMTP协议等等。我们把应用层交互的数据单元称为报文。
域名系统
域名系统(Domain Name System缩写 DNS,Domain Name被译为域名)是因特网的一项核心服务,它作为可以将域名和IP地址相互映射的一个分布式数据库,能够使人更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串。(百度百科)例如:一个公司的 Web 网站可看作是它在网上的门户,而域名就相当于其门牌地址,通常域名都使用该公司的名称或简称。例如上面提到的微软公司的域名,类似的还有:IBM 公司的域名是 www.ibm.com、Oracle 公司的域名是 www.oracle.com、Cisco公司的域名是 www.cisco.com 等。
HTTP协议
超文本传输协议(HTTP,HyperText Transfer Protocol)是互联网上应用最为广泛的一种网络协议。所有的 WWW(万维网) 文件都必须遵守这个标准。设计 HTTP 最初的目的是为了提供一种发布和接收 HTML 页面的方法。(百度百科)
运输层(transport layer)的主要任务就是负责向两台主机进程之间的通信提供通用的数据传输服务。应用进程利用该服务传送应用层报文。“通用的”是指并不针对某一个特定的网络应用,而是多种应用可以使用同一个运输层服务。由于一台主机可同时运行多个线程,因此运输层有复用和分用的功能。所谓复用就是指多个应用层进程可同时使用下面运输层的服务,分用和复用相反,是运输层把收到的信息分别交付上面应用层中的相应进程。
运输层主要使用以下两种协议:
TCP 与 UDP 的对比见问题三。
在 计算机网络中进行通信的两个计算机之间可能会经过很多个数据链路,也可能还要经过很多通信子网。网络层的任务就是选择合适的网间路由和交换结点, 确保数据及时传送。 在发送数据时,网络层把运输层产生的报文段或用户数据报封装成分组和包进行传送。在 TCP/IP 体系结构中,由于网络层使用 IP 协议,因此分组也叫 IP 数据报 ,简称 数据报。
这里要注意:不要把运输层的“用户数据报 UDP ”和网络层的“ IP 数据报”弄混。另外,无论是哪一层的数据单元,都可笼统地用“分组”来表示。
这里强调指出,网络层中的“网络”二字已经不是我们通常谈到的具体网络,而是指计算机网络体系结构模型中第三层的名称.
互联网是由大量的异构(heterogeneous)网络通过路由器(router)相互连接起来的。互联网使用的网络层协议是无连接的网际协议(Intert Protocol)和许多路由选择协议,因此互联网的网络层也叫做网际层或IP层。
数据链路层(data link layer)通常简称为链路层。两台主机之间的数据传输,总是在一段一段的链路上传送的,这就需要使用专门的链路层的协议。 在两个相邻节点之间传送数据时,数据链路层将网络层交下来的 IP 数据报组装成帧,在两个相邻节点间的链路上传送帧。每一帧包括数据和必要的控制信息(如同步信息,地址信息,差错控制等)。
在接收数据时,控制信息使接收端能够知道一个帧从哪个比特开始和到哪个比特结束。这样,数据链路层在收到一个帧后,就可从中提出数据部分,上交给网络层。 控制信息还使接收端能够检测到所收到的帧中有误差错。如果发现差错,数据链路层就简单地丢弃这个出了差错的帧,以避免继续在网络中传送下去白白浪费网络资源。如果需要改正数据在链路层传输时出现差错(这就是说,数据链路层不仅要检错,而且还要纠错),那么就要采用可靠性传输协议来纠正出现的差错。这种方法会使链路层的协议复杂些。
在物理层上所传送的数据单位是比特。 物理层(physical layer)的作用是实现相邻计算机节点之间比特流的透明传送,尽可能屏蔽掉具体传输介质和物理设备的差异。 使其上面的数据链路层不必考虑网络的具体传输介质是什么。“透明传送比特流”表示经实际电路传送后的比特流没有发生变化,对传送的比特流来说,这个电路好像是看不见的。
在互联网使用的各种协中最重要和最著名的就是 TCP/IP 两个协议。现在人们经常提到的TCP/IP并不一定单指TCP和IP这两个具体的协议,而往往表示互联网所使用的整个TCP/IP协议族。
上面我们对计算机网络的五层体系结构有了初步的了解,下面附送一张七层体系结构图总结一下。图片来源:https://blog.csdn.net/yaopeng_2005/article/details/7064869
为了准确无误地把数据送达目标处,TCP协议采用了三次握手策略。
如下图所示,下面的两个机器人通过3次握手确定了对方能正确接收和发送消息(图片来源:《图解HTTP》)。
三次握手的目的是建立可靠的通信信道,说到通讯,简单来说就是数据的发送与接收,而三次握手最主要的目的就是双方确认自己与对方的发送与接收是正常的。
第一次握手:Client 什么都不能确认;Server 确认了对方发送正常,自己接收正常
第二次握手:Client 确认了:自己发送、接收正常,对方发送、接收正常;Server 确认了:对方发送正常,自己接收正常
第三次握手:Client 确认了:自己发送、接收正常,对方发送、接收正常;Server 确认了:自己发送、接收正常,对方发送、接收正常
所以三次握手就能确认双发收发功能都正常,缺一不可。
接收端传回发送端所发送的 SYN 是为了告诉发送端,我接收到的信息确实就是你所发送的信号了。
SYN 是 TCP/IP 建立连接时使用的握手信号。在客户机和服务器之间建立正常的 TCP 网络连接时,客户机首先发出一个 SYN 消息,服务器使用 SYN-ACK 应答表示接收到了这个消息,最后客户机再以 ACK(Acknowledgement[汉译:确认字符 ,在数据通信传输中,接收站发给发送站的一种传输控制字符。它表示确认发来的数据已经接受无误。 ])消息响应。这样在客户机和服务器之间才能建立起可靠的TCP连接,数据才可以在客户机和服务器之间传递。
双方通信无误必须是两者互相发送信息都无误。传了 SYN,证明发送方到接收方的通道没有问题,但是接收方到发送方的通道还需要 ACK 信号来进行验证。
断开一个 TCP 连接则需要“四次挥手”:
任何一方都可以在数据传送结束后发出连接释放的通知,待对方确认后进入半关闭状态。当另一方也没有数据再发送的时候,则发出连接释放通知,对方确认后就完全关闭了TCP连接。
举个例子:A 和 B 打电话,通话即将结束后,A 说“我没啥要说的了”,B回答“我知道了”,但是 B 可能还会有要说的话,A 不能要求 B 跟着自己的节奏结束通话,于是 B 可能又巴拉巴拉说了一通,最后 B 说“我说完了”,A 回答“知道了”,这样通话才算结束。
上面讲的比较概括,推荐一篇讲的比较细致的文章:https://blog.csdn.net/qzcsu/article/details/72861891
UDP 在传送数据之前不需要先建立连接,远地主机在收到 UDP 报文后,不需要给出任何确认。虽然 UDP 不提供可靠交付,但在某些情况下 UDP 确是一种最有效的工作方式(一般用于即时通信),比如: QQ 语音、 QQ 视频 、直播等等
TCP 提供面向连接的服务。在传送数据之前必须先建立连接,数据传送结束后要释放连接。 TCP 不提供广播或多播服务。由于 TCP 要提供可靠的,面向连接的传输服务(TCP的可靠体现在TCP在传递数据之前,会有三次握手来建立连接,而且在数据传递时,有确认、窗口、重传、拥塞控制机制,在数据传完后,还会断开连接用来节约系统资源),这一难以避免增加了许多开销,如确认,流量控制,计时器以及连接管理等。这不仅使协议数据单元的首部增大很多,还要占用许多处理机资源。TCP 一般用于文件传输、发送和接收邮件、远程登录等场景。
自动重传请求(Automatic Repeat-reQuest,ARQ)是OSI模型中数据链路层和传输层的错误纠正协议之一。它通过使用确认和超时这两个机制,在不可靠服务的基础上实现可靠的信息传输。如果发送方在发送后一段时间之内没有收到确认帧,它通常会重新发送。ARQ包括停止等待ARQ协议和连续ARQ协议。
优点: 简单
缺点: 信道利用率低,等待时间长
1) 无差错情况:
发送方发送分组,接收方在规定时间内收到,并且回复确认.发送方再次发送。
2) 出现差错情况(超时重传):
停止等待协议中超时重传是指只要超过一段时间仍然没有收到确认,就重传前面发送过的分组(认为刚才发送过的分组丢失了)。因此每发送完一个分组需要设置一个超时计时器,其重传时间应比数据在分组传输的平均往返时间更长一些。这种自动重传方式常称为 自动重传请求 ARQ 。另外在停止等待协议中若收到重复分组,就丢弃该分组,但同时还要发送确认。连续 ARQ 协议 可提高信道利用率。发送维持一个发送窗口,凡位于发送窗口内的分组可连续发送出去,而不需要等待对方确认。接收方一般采用累积确认,对按序到达的最后一个分组发送确认,表明到这个分组位置的所有分组都已经正确收到了。
3) 确认丢失和确认迟到
连续 ARQ 协议可提高信道利用率。发送方维持一个发送窗口,凡位于发送窗口内的分组可以连续发送出去,而不需要等待对方确认。接收方一般采用累计确认,对按序到达的最后一个分组发送确认,表明到这个分组为止的所有分组都已经正确收到了。
优点: 信道利用率高,容易实现,即使确认丢失,也不必重传。
缺点: 不能向发送方反映出接收方已经正确收到的所有分组的信息。 比如:发送方发送了 5条 消息,中间第三条丢失(3号),这时接收方只能对前两个发送确认。发送方无法知道后三个分组的下落,而只好把后三个全部重传一次。这也叫 Go-Back-N(回退 N),表示需要退回来重传已经发送过的 N 个消息。
TCP 利用滑动窗口实现流量控制。流量控制是为了控制发送方发送速率,保证接收方来得及接收。 接收方发送的确认报文中的窗口字段可以用来控制发送方窗口大小,从而影响发送方的发送速率。将窗口字段设置为 0,则发送方不能发送数据。
在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就要变坏。这种情况就叫拥塞。拥塞控制就是为了防止过多的数据注入到网络中,这样就可以使网络中的路由器或链路不致过载。拥塞控制所要做的都有一个前提,就是网络能够承受现有的网络负荷。拥塞控制是一个全局性的过程,涉及到所有的主机,所有的路由器,以及与降低网络传输性能有关的所有因素。相反,流量控制往往是点对点通信量的控制,是个端到端的问题。流量控制所要做到的就是抑制发送端发送数据的速率,以便使接收端来得及接收。
为了进行拥塞控制,TCP 发送方要维持一个 拥塞窗口(cwnd) 的状态变量。拥塞控制窗口的大小取决于网络的拥塞程度,并且动态变化。发送方让自己的发送窗口取为拥塞窗口和接收方的接受窗口中较小的一个。
TCP的拥塞控制采用了四种算法,即 慢开始 、 拥塞避免 、快重传 和 快恢复。在网络层也可以使路由器采用适当的分组丢弃策略(如主动队列管理 AQM),以减少网络拥塞的发生。
百度好像最喜欢问这个问题。
打开一个网页,整个过程会使用哪些协议
图解(图片来源:《图解HTTP》):
总体来说分为以下几个过程:
具体可以参考下面这篇文章:
一般面试官会通过这样的问题来考察你对计算机网络知识体系的理解。
图片来源:《图解HTTP》
在HTTP/1.0中默认使用短连接。也就是说,客户端和服务器每进行一次HTTP操作,就建立一次连接,任务结束就中断连接。当客户端浏览器访问的某个HTML或其他类型的Web页中包含有其他的Web资源(如JavaScript文件、图像文件、CSS文件等),每遇到这样一个Web资源,浏览器就会重新建立一个HTTP会话。
而从HTTP/1.1起,默认使用长连接,用以保持连接特性。使用长连接的HTTP协议,会在响应头加入这行代码:
Connection:keep-alive
在使用长连接的情况下,当一个网页打开完成后,客户端和服务器之间用于传输HTTP数据的TCP连接不会关闭,客户端再次访问这个服务器时,会继续使用这一条已经建立的连接。Keep-Alive不会永久保持连接,它有一个保持时间,可以在不同的服务器软件(如Apache)中设定这个时间。实现长连接需要客户端和服务端都支持长连接。
HTTP协议的长连接和短连接,实质上是TCP协议的长连接和短连接。
—— 《HTTP长连接、短连接究竟是什么?》
HTTP 是一种不保存状态,即无状态(stateless)协议。也就是说 HTTP 协议自身不对请求和响应之间的通信状态进行保存。那么我们保存用户状态呢?Session 机制的存在就是为了解决这个问题,Session 的主要作用就是通过服务端记录用户的状态。典型的场景是购物车,当你要添加商品到购物车的时候,系统不知道是哪个用户操作的,因为 HTTP 协议是无状态的。服务端给特定的用户创建特定的 Session 之后就可以标识这个用户并且跟踪这个用户了(一般情况下,服务器会在一定时间内保存这个 Session,过了时间限制,就会销毁这个Session)。
在服务端保存 Session 的方法很多,最常用的就是内存和数据库(比如是使用内存数据库redis保存)。既然 Session 存放在服务器端,那么我们如何实现 Session 跟踪呢?大部分情况下,我们都是通过在 Cookie 中附加一个 Session ID 来方式来跟踪。
Cookie 被禁用怎么办?
最常用的就是利用 URL 重写把 Session ID 直接附加在URL路径的后面。
Cookie 和 Session都是用来跟踪浏览器用户身份的会话方式,但是两者的应用场景不太一样。
Cookie 一般用来保存用户信息 比如①我们在 Cookie 中保存已经登录过得用户信息,下次访问网站的时候页面可以自动帮你登录的一些基本信息给填了;②一般的网站都会有保持登录也就是说下次你再访问网站的时候就不需要重新登录了,这是因为用户登录的时候我们可以存放了一个 Token 在 Cookie 中,下次登录的时候只需要根据 Token 值来查找用户即可(为了安全考虑,重新登录一般要将 Token 重写);③登录一次网站后访问网站其他页面不需要重新登录。Session 的主要作用就是通过服务端记录用户的状态。 典型的场景是购物车,当你要添加商品到购物车的时候,系统不知道是哪个用户操作的,因为 HTTP 协议是无状态的。服务端给特定的用户创建特定的 Session 之后就可以标识这个用户并且跟踪这个用户了。
Cookie 数据保存在客户端(浏览器端),Session 数据保存在服务器端。
Cookie 存储在客户端中,而Session存储在服务器上,相对来说 Session 安全性更高。如果要在 Cookie 中存储一些敏感信息,不要直接写入 Cookie 中,最好能将 Cookie 信息加密然后使用到的时候再去服务器端解密。
这部分回答引用这篇文章 https://mp.weixin.qq.com/s/GICbiyJpINrHZ41u_4zT-A? 的一些内容。
HTTP1.0最早在网页中使用是在1996年,那个时候只是使用一些较为简单的网页上和网络请求上,而HTTP1.1则在1999年才开始广泛应用于现在的各大浏览器网络请求中,同时HTTP1.1也是当前使用最为广泛的HTTP协议。 主要区别主要体现在:
URI的作用像身份证号一样,URL的作用更像家庭住址一样。URL是一种具体的URI,它不仅唯一标识资源,而且还提供了定位该资源的信息。
非常推荐大家看一下 《图解HTTP》 这本书,这本书页数不多,但是内容很是充实,不管是用来系统的掌握网络方面的一些知识还是说纯粹为了应付面试都有很大帮助。下面的一些文章只是参考。大二学习这门课程的时候,我们使用的教材是 《计算机网络第七版》(谢希仁编著),不推荐大家看这本教材,书非常厚而且知识偏理论,不确定大家能不能心平气和的读完。
原文:https://zwmst.com/1578.html
TCP和UDP是OSI模型中的运输层中的协议。TCP提供可靠的通信传输,而UDP则常被用于让 广播和细节控制交给应用的通信传输。 两者的区别大致如下:
原文:https://zwmst.com/1580.html
TCP对应的协议:
UDP对应的协议:
原文:https://zwmst.com/1582.html
A类:10.0.0.0 – 10.255.255.255
B类:172.16.0.0 – 172.31.255.255
C类:192.168.0.0 – 192.168.255.255
原文:https://zwmst.com/1584.html
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2Bcn1f8m-1685368613351)(img/706048d9c11764741197c45b6e9ce3b6.png)]
原文:https://zwmst.com/1586.html
如果你不了解,请直接点击阅读:TCP/IP四层模型
原文:https://zwmst.com/1588.html
IP地址分为网络号和主机号, A类地址的前8位是网络地址,B类地址的前16位是网络地址,C 类地址的前24位是网络地址。
A类地址: 1.0.0.0~126.0.0.0
B类地址:128.0.0.0 ~ 191.255.255.255
C类地址:192.0.0.0 ~ 223.255.255.255
D类地址:224.0.0.0 ~ 239.255.255.255 (作为多播使用)
E类地址:保留
A,B,C是基本类,D、E类作为多播和保留使用。主机号,全0的是网络号,主机号全1的是广播 地址。
原文:https://zwmst.com/1590.html
首先, 每个主机会在自己的ARP缓冲区简历一个ARP列表,以表示IP地址和MAC地址之间的 对应关系。
当源主机要发送数据时,首先检查自己的ARP列表中是否有对应的目的主机的MAC地址,如果 有就直接发送数据,如果没有,就向本网段的所有的主机发送ARP数据包, 该数据包括的内容 由:源主机IP地址,源主机的MAC地址,目的主机的IP地址
当本网络的所有主机收到ARP数据包时,首先检查数据包中的IP地址是否是自己的IP地址,如 果不是,则忽略该数据包,如果是,则首先从数据包中取出源主机的IP和MAC地址写入到ARP 列表中,如果已经存在,则覆盖,然后将自己的MAC地址中放入到ARP响应包中,告诉源主机 自己是它想找的MAC地址。
源主机接收到ARP响应包后,将目的主机的IP和MAC地址写入到ARP列表,并利用此消息发送 数据。如果源主机一直没有收到ARP响应数据包,表示ARP查询失败。
广播发送ARP请求,单播发送ARP响应。
原文:https://zwmst.com/1592.html
ICMP : 因特网控制报文协议。它是TCP/IP协议族的一个子协议,用于在IP主机、路由器之间传递控制消息
TFTP:是TCP/IP协议族中的一个用来在客户机和服务器之间进行简单的文件传输的协议,提 供不复杂、开销不大的文件传输服务
HTTP:超文本传输层协议,是一个属于应用层的面向对象的协议
NAT协议:网络地址转换接入广域网(WAN)技术,是一种将私有地址转换为合法IP地址的转换技术
DHCP协议:动态主机配置协议,使用UDP协议工作。给内部的网络和网络服务供应商自动的 分配IP地址。
RARP是逆地址解析协议,作用是完成从硬件地址到IP地址的映射,RARP只能用于具有广播 能力的网络。封装一个RARP的数据包里面有MAC地址, 然后广播到网络上,当服务器收到请求包后,就查找对应的MAC地址的IP地址装入到响应报文中发送给请求者。
一些常见的端口号及其用途:
TCP 21端口 : FTP 文件传输服务
TCP 23 端口:TELNET 终端仿真服务
TCP 25端口:SMTP简单邮件传输服务
UDP 53端口:DNS域名解析服务
TCP 80端口:HTTP超文本传输服务
TCP 109端口:POP2邮局协议2
TCP 110端口 : POP3邮局协议版本3使用的端口
UDP 69 端口:TFTP 简单文件传输协议
3306:Mysql端口号
原文:https://zwmst.com/1594.html
在TCP/IP协议中,TCP协议提供可靠的连接服务,连接是通过三次握手进行初始化的。三次握 手的目的是同步连接双方的序列号和确认号并交换TCP窗口大小信息
核心思想:让双方都证实对方能发收。知道对方能收是因为收到对方的因为收到信息之 后发的回应(ACK)。
客户端–发送带有 SYN 标志的数据包–一次握手–服务端
服务端–发送带有 SYN/ACK 标志的数据包–二次握手–客户端
客户端–发送带有带有 ACK 标志的数据包–三次握手–服务端
原文:https://zwmst.com/1596.html
三次握手的目的是建立可靠的通信信道,说到通讯,简单来说就是数据的发送与接收,而三次 握手最主要的目的就是双方确认自己与对方的发送与接收是正常的。
第一次握手:Client 什么都不能确认;Server 确认了对方发送正常,自己接收正常
第二次握手:Client 确认了:自己发送、接收正常,对方发送、接收正常;Server 确认了: 对方发送正常,自己接收正常
第三次握手:Client 确认了:自己发送、接收正常,对方发送、接收正常;Server 确认了: 自己发送、接收正常,对方发送、接收正常
所以三次握手就能确认双发收发功能都正常,缺一不可。
原文:https://zwmst.com/1598.html
接收端传回发送端所发送的 SYN 是为了告诉发送端,我接收到的信息确实就是你所发送的信号了。
SYN是TCP/IP建立连接时使用的握手信号。在客户机和服务器之间建立正常的TCP网络连接时,客户机首先发出一个SYN消息,服务器使用SYN-ACK应答表示接收到了这个消息,最后客户机再以ACK(Acknowledgement[汉译:确认字符,在数据通信传输中,接收站发给发送站的一种传输控制字符。它表示确认发来的数据已经接受无误。])消息响应。这样在客户机和服务器之间才能建立起可靠的TCP连接,数据才可以在客户机和服务器之间传递。
原文:https://zwmst.com/1600.html
任何一方都可以在数据传送结束后发出连接释放的通知,待对方确认后进入半关闭状态。当另 一方也没有数据再发送的时候,则发出连接释放通知,对方确认后就完全关闭了TCP连接。
举个例子:A 和 B 打电话,通话即将结束后,A 说“我没啥要说的了”,B回答“我知道了”,但 是 B 可能还会有要说的话,A 不能要求 B 跟着自己的节奏结束通话,于是 B 可能又巴拉巴拉说 了一通,最后 B 说“我说完了”,A 回答“知道了”,这样通话才算结束。
上面讲的比较概括,推荐一篇讲的比较细致的文章:https://blog.csdn.net/qzcsu/article/details/72861891
原文:https://zwmst.com/1602.html
TCP 利用滑动窗口实现流量控制。流量控制是为了控制发送方发送速率,保证接收方来得及接 收。 接收方发送的确认报文中的窗口字段可以用来控制发送方窗口大小,从而影响发送方的发 送速率。将窗口字段设置为 0,则发送方不能发送数据。
原文:https://zwmst.com/1605.html
在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就要 变坏。这种情况就叫拥塞。拥塞控制就是为了防止过多的数据注入到网络中,这样就可以使网 络中的路由器或链路不致过载。拥塞控制所要做的都有一个前提,就是网络能够承受现有的网 络负荷。拥塞控制是一个全局性的过程,涉及到所有的主机,所有的路由器,以及与降低网络 传输性能有关的所有因素。相反,流量控制往往是点对点通信量的控制,是个端到端的问题。 流量控制所要做到的就是抑制发送端发送数据的速率,以便使接收端来得及接收。
为了进行拥塞控制,TCP 发送方要维持一个 拥塞窗口(cwnd) 的状态变量。拥塞控制窗口的大 小取决于网络的拥塞程度,并且动态变化。发送方让自己的发送窗口取为拥塞窗口和接收方的 接受窗口中较小的一个。
TCP的拥塞控制采用了四种算法,即 慢开始 、 拥塞避免 、快重传 和 快恢复。在网络层也可以 使路由器采用适当的分组丢弃策略(如主动队列管理 AQM),以减少网络拥塞的发生。
原文:https://zwmst.com/1607.html
百度好像最喜欢问这个问题。
打开一个网页,整个过程会使用哪些协议
图解(图片来源:《图解HTTP》):
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pgZSw843-1685368613352)(img/98548010e8ebd96c4ad5670f83e6a5b7.png)]
总体来说分为以下几个过程:
DNS解析
TCP连接
发送HTTP请求
服务器处理请求并返回HTTP报文
浏览器解析渲染页面
连接结束
具体可以参考下面这篇文章:
https://segmentfault.com/a/1190000006879700
原文:https://zwmst.com/1609.html
GET:对服务器资源的简单请求
POST:用于发送包含用户提交数据的请求
HEAD:类似于GET请求,不过返回的响应中没有具体内容,用于获取报头
PUT:传说中请求文档的一个版本
DELETE:发出一个删除指定文档的请求
TRACE:发送一个请求副本,以跟踪其处理进程
OPTIONS:返回所有可用的方法,检查服务器支持哪些方法
CONNECT:用于ssl隧道的基于代理的请求
原文:https://zwmst.com/3654.html
7 层模型主要包括:
原文:https://zwmst.com/3656.html
TCP/IP 协议不是 TCP 和 IP 这两个协议的合称,而是指因特网整个 TCP/IP 协议族。从协议分层模型方面来讲,TCP/IP 由四个层次组成:网络接口层、网络层、传输层、应用层。
原文:https://zwmst.com/3658.html
网络访问层(Network Access Layer)在 TCP/IP 参考模型中并没有详细描述,只是指出主机必须使用某种协议与网络相连。
原文:https://zwmst.com/3660.html
网络层(Internet Layer)是整个体系结构的关键部分,其功能是使主机可以把分组发往任何网络,并使分组独立地传向目标。这些分组可能经由不同的网络,到达的顺序和发送的顺序也可能不同。高层如果需要顺序收发,那么就必须自行处理对分组的排序。互联网层使用因特网协议(IP,Internet Protocol)。
原文:https://zwmst.com/3662.html
传输层(Tramsport Layer)使源端和目的端机器上的对等实体可以进行会话。在这一层定义了两个端到端的协议:传输控制协议(TCP,Transmission Control Protocol)和用户数据报协议(UDP,User Datagram Protocol)。TCP 是面向连接的协议,它提供可靠的报文传输和对上层应用的连接服务。为此,除了基本的数据传输外,它还有可靠性保证、流量控制、多路复用、优先权和安全性控制等功能。UDP 是面向无连接的不可靠传输的协议,主要用于不需要 TCP 的排序和流量控制等功能的应用程序。
原文:https://zwmst.com/3665.html
应用层(Application Layer)包含所有的高层协议,包括:**虚拟终端协议(TELNET,TELecommunications NETwork)、文件传输协议(FTP,File Transfer Protocol)、电子邮件传输协议(SMTP,Simple Mail Transfer Protocol)、域名服务(DNS,Domain Name
原文:https://zwmst.com/3668.html
TCP 在传输之前会进行三次沟通,一般称为“三次握手”,传完数据断开的时候要进行四次沟通,一般称为“四次挥手”。
原文:https://zwmst.com/3670.html
原文:https://zwmst.com/3673.html
第一次握手:主机 A 发送位码为 syn=1,随机产生 seqnumber=1234567 的数据包到服务器,主机 B由 SYN=1 知道,A 要求建立联机;
第二次握手:主机 B 收到请求后要确认联机信息,向 A 发 送 ack number=( 主 机 A 的seq+1),syn=1,ack=1,随机产生seq=7654321 的包
第三次握手:主机 A 收到后检查 ack number 是否正确,即第一次发送的 seq number+1,以及位码ack 是否为 1,若正确,主机 A 会再发送 ack number=(主机 B 的 seq+1),ack=1,主机 B 收到后确认
原文:https://zwmst.com/3675.html
TCP 建立连接要进行三次握手,而断开连接要进行四次。这是由于 TCP 的半关闭造成的。因为 TCP 连接是全双工的(即数据可在两个方向上同时传递)所以进行关闭时每个方向上都要单独进行关闭。这个单方向的关闭就叫半关闭。当一方完成它的数据发送任务,就发送一个 FIN 来向另一方通告将要终止这个方向的连接。
关闭客户端到服务器的连接:首先客户端 A 发送一个 FIN,用来关闭客户到服务器的数据传送,然后等待服务器的确认。其中终止标志位 FIN=1,序列号 seq=u
服务器收到这个 FIN,它发回一个 ACK,确认号 ack 为收到的序号加 1。
关闭服务器到客户端的连接:也是发送一个 FIN 给客户端。
客户段收到 FIN 后,并发回一个 ACK 报文确认,并将确认序号 seq 设置为收到序号加 1。
首先进行关闭的一方将执行主动关闭,而另一方执行被动关闭。
主机 A 发送 FIN 后,进入终止等待状态, 服务器 B 收到主机 A 连接释放报文段后,就立即给主机 A 发送确认,然后服务器 B 就进入 close-wait 状态,此时 TCP 服务器进程就通知高层应用进程,因而从 A 到 B 的连接就释放了。此时是“半关闭”状态。即 A 不可以发送给B,但是 B 可以发送给 A。此时,若 B 没有数据报要发送给 A 了,其应用进程就通知 TCP 释放连接,然后发送给 A 连接释放报文段,并等待确认。A 发送确认后,进入 time-wait,注意,此时 TCP 连接还没有释放掉,然后经过时间等待计时器设置的 2MSL 后,A 才进入到close 状态。
原文:https://zwmst.com/3680.html
HTTP 是一个无状态的协议。无状态是指客户机(Web 浏览器)和服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后服务器返回响应(response),连接就被关闭了,在服务器端不保留连接的有关信息.HTTP 遵循请求(Request)/应答(Response)模型。客户机(浏览器)向服务器发送请求,服务器处理请求并返回适当的应答。所有 HTTP 连接都被构造成一套请求和应答。
原文:https://zwmst.com/3682.html
如用客户端浏览器请求这个页面:http://localhost.com:8080/index.htm 从中分解出协议名、主机名、端口、对象路径等部分,对于我们的这个地址,解析得到的结果如下:
协议名:http
主机名:localhost.com
端口:8080
对象路径:/index.htm
在这一步,需要域名系统 DNS 解析域名 localhost.com,得主机的 IP 地址。
原文:https://zwmst.com/3684.html
把以上部分结合本机自己的信息,封装成一个 HTTP 请求数据包
原文:https://zwmst.com/3687.html
封装成 TCP 包,建立 TCP 连接(TCP 的三次握手)
原文:https://zwmst.com/3689.html
客户机发送请求命令:建立连接后,客户机发送一个请求给服务器,请求方式的格式为:统一资源标识符(URL)、协议版本号,后边是 MIME 信息包括请求修饰符、客户机信息和可内容。
原文:https://zwmst.com/3691.html
服务器接到请求后,给予相应的响应信息,其格式为一个状态行,包括信息的协议版本号、一个成功或错误的代码,后边是 MIME 信息包括服务器信息、实体信息和可能的内容。
原文:https://zwmst.com/3693.html
服务器关闭 TCP 连接:一般情况下,一旦 Web 服务器向浏览器发送了请求数据,它就要关闭 TCP 连接,然后如果浏览器或者服务器在其头信息加入了这行代码 Connection:keep-alive,TCP 连接在发送后将仍然保持打开状态,于是,浏览器可以继续通过相同的连接发送请求。保持连接节省了为每个请求建立新连接所需的时间,还节约了网络带宽。
原文:https://zwmst.com/3695.html
HTTPS(全称:Hypertext Transfer Protocol over Secure Socket Layer),是以安全为目标的HTTP 通道,简单讲是 HTTP 的安全版。即 HTTP 下加入 SSL 层,HTTPS 的安全基础是 SSL。其所用的端口号是 443。
原文:https://zwmst.com/3697.html
SSL 客户端通过 TCP 和服务器建立连接之后(443 端口),并且在一般的 tcp 连接协商(握手)过程中请求证书。即客户端发出一个消息给服务器,这个消息里面包含了自己可实现的算法列表和其它一些需要的消息,SSL 的服务器端会回应一个数据包,这里面确定了这次通信所需要的算法,然后服务器向客户端返回证书。(证书里面包含了服务器信息:域名。申请证书的公司,公共秘钥)。
原文:https://zwmst.com/3699.html
Client 在收到服务器返回的证书后,判断签发这个证书的公共签发机构,并使用这个机构的公共秘钥确认签名是否有效,客户端还会确保证书中列出的域名就是它正在连接的域名。
原文:https://zwmst.com/3701.html
如果确认证书有效,那么生成对称秘钥并使用服务器的公共秘钥进行加密。然后发送给服务器,服务器使用它的私钥对它进行解密,这样两台计算机可以开始进行对称加密进行通信。
原文:https://zwmst.com/3708.html
CND 一般包含分发服务系统、负载均衡系统和管理系统
原文:https://zwmst.com/3711.html
其基本的工作单元就是各个 Cache 服务器。负责直接响应用户请求,将内容快速分发到用户;同时还负责内容更新,保证和源站内容的同步。
根据内容类型和服务种类的不同,分发服务系统分为多个子服务系统,如:网页加速服务、流媒体加速服务、应用加速服务等。每个子服务系统都是一个分布式的服务集群,由功能类似、地域接近的分布部署的 Cache 集群组成。
在承担内容同步、更新和响应用户请求之外,分发服务系统还需要向上层的管理调度系统反馈各个Cache 设备的健康状况、响应情况、内容缓存状况等,以便管理调度系统能够根据设定的策略决定由哪个 Cache 设备来响应用户的请求。
原文:https://zwmst.com/3713.html
负载均衡系统是整个 CDN 系统的中枢。负责对所有的用户请求进行调度,确定提供给用户的最终访问地址。
使用分级实现。最基本的两极调度体系包括全局负载均衡(GSLB)和本地负载均衡(SLB)。
GSLB 根据用户地址和用户请求的内容,主要根据就近性原则,确定向用户服务的节点。一般通过 DNS解析或者应用层重定向(Http 3XX 重定向)的方式实现。
SLB 主要负责节点内部的负载均衡。当用户请求从 GSLB 调度到 SLB 时,SLB 会根据节点内各个Cache 设备的工作状况和内容分布情况等对用户请求重定向。SLB 的实现有四层调度(LVS)、七层调度(Nginx)和链路负载调度等。
原文:https://zwmst.com/3715.html
分为运营管理和网络管理子系统。
网络管理系统实现对 CDN 系统的设备管理、拓扑管理、链路监控和故障管理,为管理员提供对全网资源的可视化的集中管理,通常用 web 方式实现。
可以开始进行对称加密进行通信。
原文:https://zwmst.com/3708.html
CND 一般包含分发服务系统、负载均衡系统和管理系统
原文:https://zwmst.com/3711.html
其基本的工作单元就是各个 Cache 服务器。负责直接响应用户请求,将内容快速分发到用户;同时还负责内容更新,保证和源站内容的同步。
根据内容类型和服务种类的不同,分发服务系统分为多个子服务系统,如:网页加速服务、流媒体加速服务、应用加速服务等。每个子服务系统都是一个分布式的服务集群,由功能类似、地域接近的分布部署的 Cache 集群组成。
在承担内容同步、更新和响应用户请求之外,分发服务系统还需要向上层的管理调度系统反馈各个Cache 设备的健康状况、响应情况、内容缓存状况等,以便管理调度系统能够根据设定的策略决定由哪个 Cache 设备来响应用户的请求。
原文:https://zwmst.com/3713.html
负载均衡系统是整个 CDN 系统的中枢。负责对所有的用户请求进行调度,确定提供给用户的最终访问地址。
使用分级实现。最基本的两极调度体系包括全局负载均衡(GSLB)和本地负载均衡(SLB)。
GSLB 根据用户地址和用户请求的内容,主要根据就近性原则,确定向用户服务的节点。一般通过 DNS解析或者应用层重定向(Http 3XX 重定向)的方式实现。
SLB 主要负责节点内部的负载均衡。当用户请求从 GSLB 调度到 SLB 时,SLB 会根据节点内各个Cache 设备的工作状况和内容分布情况等对用户请求重定向。SLB 的实现有四层调度(LVS)、七层调度(Nginx)和链路负载调度等。
原文:https://zwmst.com/3715.html
分为运营管理和网络管理子系统。
网络管理系统实现对 CDN 系统的设备管理、拓扑管理、链路监控和故障管理,为管理员提供对全网资源的可视化的集中管理,通常用 web 方式实现。
运营管理是对 CDN 系统的业务管理,负责处理业务层面的与外界系统交互所必须的一些收集、整理、交付工作。包括用户管理、产品管理、计费管理、统计分析等。