从大的方面来说,可以划分为两个阶段:
ELF(Executable and Linkable Format,可执行与可链接格式)
在Linux系统中,使用ELF来存储和组织数据
ELF主要文件结构:
.text Section
:代码段或者指令段(Code Section),用来保存程序的代码和指令;.data Section
:数据段(Data Section),用来保存程序里面设置好的初始化数据信息;.rel.text Secion
,:重定位表(Relocation Table)。重定位表里,保留的是当前的文件里面,哪些跳转地址其实是我们不知道的。.symtab Section
:符号表(Symbol Table)。符号表保留了我们所说的当前文件里面定义的函数名称和对应地址的地址簿。以下两个文件 add_lib.c
和 link_example.c
协同工作,实现了一个加法功能。
// add_lib.c
int add(int a, int b)
{
return a+b;
}
// link_example.c
#include
int main()
{
int a = 10;
int b = 5;
int c = add(a, b);
printf("c = %d\n", c);
}
以下是 add_lib.c
和 link_example.c
生成的目标文件(Object File):add_lib.o
和link_example .o
。
使用gcc编译:
$ gcc -g -c add_lib.c link_example.c
$ objdump -d -M intel -S add_lib.o
$ objdump -d -M intel -S link_example.o
通过编译后我们得到的汇编代码:
# add_lib函数的汇编代码
add_lib.o: file format elf64-x86-64
Disassembly of section .text:
0000000000000000 <add>:
0: 55 push rbp
1: 48 89 e5 mov rbp,rsp
4: 89 7d fc mov DWORD PTR [rbp-0x4],edi
7: 89 75 f8 mov DWORD PTR [rbp-0x8],esi
a: 8b 55 fc mov edx,DWORD PTR [rbp-0x4]
d: 8b 45 f8 mov eax,DWORD PTR [rbp-0x8]
10: 01 d0 add eax,edx
12: 5d pop rbp
13: c3 ret
# link_example函数的汇编代码
link_example.o: file format elf64-x86-64
Disassembly of section .text:
0000000000000000 <main>:
0: 55 push rbp
1: 48 89 e5 mov rbp,rsp
4: 48 83 ec 10 sub rsp,0x10
8: c7 45 fc 0a 00 00 00 mov DWORD PTR [rbp-0x4],0xa
f: c7 45 f8 05 00 00 00 mov DWORD PTR [rbp-0x8],0x5
16: 8b 55 f8 mov edx,DWORD PTR [rbp-0x8]
19: 8b 45 fc mov eax,DWORD PTR [rbp-0x4]
1c: 89 d6 mov esi,edx
1e: 89 c7 mov edi,eax
20: b8 00 00 00 00 mov eax,0x0
25: e8 00 00 00 00 call 2a <main+0x2a>
2a: 89 45 f4 mov DWORD PTR [rbp-0xc],eax
2d: 8b 45 f4 mov eax,DWORD PTR [rbp-0xc]
30: 89 c6 mov esi,eax
32: 48 8d 3d 00 00 00 00 lea rdi,[rip+0x0] # 39
39: b8 00 00 00 00 mov eax,0x0
3e: e8 00 00 00 00 call 43 <main+0x43>
43: b8 00 00 00 00 mov eax,0x0
48: c9 leave
49: c3 ret
gcc -c add_lib.s
gcc -c link_example.s
gcc -o executable add_lib.o link_example.o
$ ./executable
c = 15 # 运行结果为15
main
函数里调用 add
的跳转地址,不再是下一条指令的地址了,而是 add
函数的入口地址了
link_example: file format elf64-x86-64
Disassembly of section .init:
...
Disassembly of section .plt:
...
Disassembly of section .plt.got:
...
Disassembly of section .text:
...
6b0: 55 push rbp
6b1: 48 89 e5 mov rbp,rsp
6b4: 89 7d fc mov DWORD PTR [rbp-0x4],edi
6b7: 89 75 f8 mov DWORD PTR [rbp-0x8],esi
6ba: 8b 55 fc mov edx,DWORD PTR [rbp-0x4]
6bd: 8b 45 f8 mov eax,DWORD PTR [rbp-0x8]
6c0: 01 d0 add eax,edx
6c2: 5d pop rbp
6c3: c3 ret
00000000000006c4 <main>:
6c4: 55 push rbp
6c5: 48 89 e5 mov rbp,rsp
6c8: 48 83 ec 10 sub rsp,0x10
6cc: c7 45 fc 0a 00 00 00 mov DWORD PTR [rbp-0x4],0xa
6d3: c7 45 f8 05 00 00 00 mov DWORD PTR [rbp-0x8],0x5
6da: 8b 55 f8 mov edx,DWORD PTR [rbp-0x8]
6dd: 8b 45 fc mov eax,DWORD PTR [rbp-0x4]
6e0: 89 d6 mov esi,edx
6e2: 89 c7 mov edi,eax
6e4: b8 00 00 00 00 mov eax,0x0
6e9: e8 c2 ff ff ff call 6b0 <add> # 直接在main函数中调用add函数的入口地址
6ee: 89 45 f4 mov DWORD PTR [rbp-0xc],eax
6f1: 8b 45 f4 mov eax,DWORD PTR [rbp-0xc]
6f4: 89 c6 mov esi,eax
6f6: 48 8d 3d 97 00 00 00 lea rdi,[rip+0x97]
6fd: b8 00 00 00 00 mov eax,0x0
702: e8 59 fe ff ff call 560 <printf@plt>
707: b8 00 00 00 00 mov eax,0x0
70c: c9 leave
70d: c3 ret
70e: 66 90 xchg ax,ax
...
Disassembly of section .fini:
...
链接器会扫描所有输入的目标文件,然后把所有符号表里的信息收集起来,构成一个全局的符号表。然后再根据重定位表,把所有不确定要跳转地址的代码,根据符号表里面存储的地址,进行一次修正。最后,把所有的目标文件的对应段进行一次合并,变成了最终的可执行代码。
如何在Window系统和Linux系统下进行格式兼容?