深度学习数据处理中,标量、向量、张量的区别与联系

计算机中的标量机是指只是一个数一个数地进行计算的加工处理方法,区别于向量机能够对一批数据同时进行加工处理。标量机比向量机的运算速度慢,因此,向量机更适合于演算数据量多的大型科学、工程计算问题。

计算机可以进行数值计算,又可以进行逻辑计算,还具有存储记忆功能。是能够按照程序运行,自动、高速处理海量数据的现代化智能电子设备。

1、标量(Scalar)

一个标量就是一个单独的数,一般用小写的的变量名称表示。

2、向量(Vector)

一个向量就是一列数,这些数是有序排列的。用过次序中的索引,我们可以确定每个单独的数。通常会赋予向量粗体的小写名称。当我们需要明确表示向量中的元素时,我们会将元素排列成一个方括号包围的纵柱:

深度学习数据处理中,标量、向量、张量的区别与联系_第1张图片

我们可以把向量看作空间中的点,每个元素是不同的坐标轴上的坐标。

3、矩阵(Matrix)

矩阵是二维数组,其中的每一个元素被两个索引而非一个所确定。我们通常会赋予矩阵粗体的大写变量名称,比如A。 如果一个实数矩阵高度为m,宽度为n,那么我们说

在这里插入图片描述

深度学习数据处理中,标量、向量、张量的区别与联系_第2张图片

矩阵这东西在机器学习和深度学习中太重要了!

实际上,如果我们现在有N个用户的数据,每条数据含有M个特征,那其实它对应的就是一个N*M的矩阵呀;再比如,一张图由16*16的像素点组成,那这就是一个16*16的矩阵了。现在才发现,我们大一学的矩阵原理原来这么的有用!要是当时老师讲课的时候先普及一下,也不至于很多同学学矩阵的时候觉得莫名其妙了。

4、张量(tensor)

几何代数中定义的张量是基于向量和矩阵的推广,通俗一点理解的话,我们可以将标量视为零阶张量,矢量视为一阶张量,那么矩阵就是二阶张量。

例如,可以将任意一张彩色图片表示成一个三阶张量,三个维度分别是图片的高度、宽度和色彩数据。将这张图用张量表示出来,就是最下方的那张表格:

深度学习数据处理中,标量、向量、张量的区别与联系_第3张图片

其中表的横轴表示图片的宽度值,这里只截取0~319;表的纵轴表示图片的高度值,这里只截取0~4;表格中每个方格代表一个像素点,比如第一行第一列的表格数据为[1.0,1.0,1.0],代表的就是RGB三原色在图片的这个位置的取值情况(即R=1.0,G=1.0,B=1.0)。

当然我们还可以将这一定义继续扩展,即:我们可以用四阶张量表示一个包含多张图片的数据集,这四个维度分别是:图片在数据集中的编号,图片高度、宽度,以及色彩数据。

张量在深度学习中是一个很重要的概念,因为它是一个深度学习框架中的一个核心组件,后续的所有运算和优化算法几乎都是基于张量进行的。

你可能感兴趣的:(深度学习,深度学习,人工智能,算法)