- Python数据分析实战案例
master_chenchengg
pythonpythonPythonpython开发IT
Python数据分析实战案例数据分析的魅力:Python与Pandas的完美结合初识Pandas:数据处理的瑞士军刀环境搭建:如何在本地安装Pandas第一步:加载和查看你的第一个数据集数据清洗的艺术:让数据更干净缺失值处理:填补或删除缺失数据异常值检测:找出数据中的“怪兽”重复数据处理:告别冗余数据探索与可视化:揭开数据的神秘面纱基本统计分析:了解数据的基本特征数据可视化:用图表讲述数据的故事相
- 基于Python的医院运营数据可视化平台:设计、实现与应用(下)
Allen_LVyingbo
python医疗高效编程研发python信息可视化健康医疗系统架构
5.2数据采集与预处理的代码实现从HIS、LIS等系统采集数据时,需要针对不同系统的接口特点编写相应的采集代码。以从HIS系统采集患者就诊记录为例,假设HIS系统提供了基于HTTP的API接口,且数据格式为JSON,以下是使用Python的requests库进行数据采集的代码示例:importrequestsimportjson\#HIS系统API地址his\_api\_url="http://h
- 《AI与NLP:开启元宇宙社交互动新纪元》
人工智能深度学习
在科技飞速发展的当下,元宇宙正从概念逐步走向现实,成为人们关注的焦点。而在元宇宙诸多令人瞩目的特性中,社交互动体验是其核心魅力之一。人工智能(AI)与自然语言处理(NLP)技术的迅猛发展,为元宇宙社交互动带来了前所未有的变革与提升,深刻地影响着用户在虚拟世界中的社交方式与体验。自然语言交互,打破沟通壁垒在早期的元宇宙雏形中,用户与虚拟环境、其他用户的交互多依赖于简单的指令输入或有限的动作操作,这种
- 使用LlamaIndex进行Token计数的实战指南
llzwxh888
自然语言处理人工智能python
在人工智能领域,特别是在自然语言处理(NLP)任务中,理解和跟踪Token的使用情况是非常重要的。这篇文章将介绍如何使用LlamaIndex库来进行Token计数,并提供一些实用的代码示例,以便你在自己的项目中应用这些技术。环境设置首先,我们需要设置回调和服务上下文。通过全局设置,我们可以在不需要每次查询时都传递这些设置的情况下使用它们。importosos.environ["OPENAI_API
- C++:使用 SFML 创建强化学习迷宫场景
煤炭里de黑猫
c++开发语言
在强化学习中,迷宫通常作为一种环境,供智能体(Agent)在其中进行探索和学习。通过设计合适的环境,我们可以训练模型让其通过迷宫找到最优路径。本文将介绍如何使用C++和SFML库来创建一个迷宫场景,并为强化学习模型提供一个可视化的平台。1.安装和配置SFMLSFML是一个开源的跨平台图形库,适用于C++开发。你可以使用它来创建窗口、处理图形、事件、音频等。本项目使用的是SFML的图形模块。配置步骤
- 用 Python + LLM 实现一个智能对话
AGI大模型学习
python开发语言langchainprompt大模型AI大模型
大型语言模型LLM最近比较火,所以我也来用LLM写个智能对话玩玩。简介大语言模型LLM全称是LargeLanguageModels。LLM是指具有巨大参数量和极高语言理解能力的神经网络模型。这些模型被训练来理解和生成自然语言文本,能够执行多种自然语言处理(NLP)任务,如文本生成、翻译、摘要、问答等。所以LLM可以做以下事情:文本生成:LLM可以生成各种类型的文本,如新闻、文章、小说等。智能对话系
- 2023-arXiv-FinGPT: 开源金融大语言模型
量仔搞靓化
金融大语言模型金融语言模型人工智能
arXiv|https://arxiv.org/abs/2306.06031GitHub|https://github.com/AI4Finance-Foundation/FinGPT&https://github.com/AI4Finance-Foundation/FinNLP摘要:大语言模型(LLMs)在多个领域展示出革新自然语言处理任务的潜力,这在金融领域引发了极大的兴趣。获取高质量的金融数
- 【大模型应用开发 动手做AI Agent】大模型就是Agent的大脑
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
【大模型应用开发动手做AIAgent】大模型就是Agent的大脑关键词:大模型,AIAgent,智能决策,任务导向,知识表示,交互式学习,混合智能1.背景介绍1.1问题由来随着人工智能(AI)技术的发展,尤其是深度学习和自然语言处理(NLP)技术的进步,越来越多的应用场景开始采用AI模型来解决复杂的决策问题。然而,当前的AI模型大多依赖于大模型的预训练知识,这些模型虽然在通用知识获取上取得了显著进
- 2025最新Python机器视觉实战:基于OpenCV与深度学习的多功能工业视觉检测系统(附完整代码)
emmm形成中
pythonopencv深度学习
2025最新Python机器视觉实战:基于OpenCV与深度学习的多功能工业视觉检测系统(附完整代码)摘要:本文基于OpenCV与深度学习模型,实现一个多功能工业视觉检测系统,包含缺陷检测、尺寸测量、颜色识别、OCR文本识别、目标分类与数据可视化等功能。代码兼容Python3.7+,功能丰富且经过稳定性测试,适合工业场景应用。所有依赖库均为最新版本,确保运行流畅。一、环境准备安装依赖库pipins
- Python自然语言处理之spacy模块介绍、安装与常见操作案例
袁袁袁袁满
Python实用技巧大全python自然语言处理easyui
文章目录spacy模块介绍安装spacy常见操作案例及代码1.加载模型并处理文本2.词性标注3.命名实体识别4.依存句法分析5.可视化(在JupyterNotebook中)spacy模块介绍spacy是一个强大的Python库,用于自然语言处理(NLP)。它提供了丰富的功能,包括分词、词性标注、依存句法分析、命名实体识别等,并且支持多种语言。spacy以其高性能、易用性和可扩展性而受到广泛欢迎。安
- 接口测试工具:Postman、Apifox、Apipost分析
优联前端
优联前端(AI+其他)postmanapipostapifox优联前端
Postman、Apifox、Apipost都是流行的API接口管理工具,它们各自具有不同的特点和优势,因此哪个更好用取决于具体的使用场景和需求。以下是对这三个工具的比较分析:一、Postman特点与优势:支持多种请求方式:包括GET、POST、PUT、DELETE等,满足多种API测试需求。可视化界面:提供直观的界面,方便用户进行操作和管理。断言和测试脚本:支持编写断言和测试脚本,实现自动化测试
- 【面试系列】TypeScript高频面试题及详细解答
野老杂谈
全网最全IT公司面试宝典面试typescript编程语言前端
欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏:⭐️全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、HR面试真题.⭐️AIGC时代的创新与未来:详细讲解AIGC的概念、核心技术、应用领域等内容。⭐️全流程数据技术实战指南:全面讲解从数据采集到数据可视化的整个过程,掌握构建现代化数据平台和数据仓库的核心技术和方法。文章目录常见的初级面试题1.什么是TypeSc
- 【Python数据分析五十个小案例】使用自然语言处理(NLP)技术分析 Twitter 情感
小馒头学python
python数据分析自然语言处理
博客主页:小馒头学python本文专栏:Python爬虫五十个小案例专栏简介:分享五十个Python爬虫小案例项目简介什么是情感分析情感分析(SentimentAnalysis)是文本分析的一部分,旨在识别文本中传递的情感信息,例如正面、负面或中立情绪。为什么选择Twitter数据数据丰富:Twitter上每天产生数百万条推文,内容多样。即时性:适合实时分析。公开可用:提供API可轻松访问。NLP
- Neat Vision:深度学习NLP注意力机制可视化工具教程
纪亚钧
NeatVision:深度学习NLP注意力机制可视化工具教程neat-visionNeat(NeuralAttention)Vision,isavisualizationtoolfortheattentionmechanismsofdeep-learningmodelsforNaturalLanguageProcessing(NLP)tasks.(framework-agnostic)项目地址:h
- 将Neo4j用于Python学习的创新方法
黑金IT
知识图谱neo4jpython学习
Neo4j作为一款强大的图数据库,其独特的关系性特点能够为Python学习带来全新的视角和深度理解。通过将Neo4j与Python学习相结合,可以帮助学生更直观、更深入地掌握Python编程的各个方面。以下是具体的建议和方法:1.利用Neo4j可视化Python数据结构通过Neo4j把Python中的数据结构,如列表、字典、集合等,以可视化的方式呈现。把数据结构中的元素当作节点,元素之间的关系作为
- 【有啥问啥】DeepSeek NSA(Native Sparse Attention):开启高效推理与降本增效的新篇章
有啥问啥
大模型人工智能算法
DeepSeekNSA(NativeSparseAttention):开启高效推理与降本增效的新篇章在人工智能领域,尤其是自然语言处理(NLP)和大语言模型(LLM)的浪潮中,性能与效率一直是研究者和开发者关注的焦点。随着模型规模的不断扩大,计算资源的需求呈指数级增长,这不仅带来了高昂的硬件成本,也对推理速度和实时性提出了严峻挑战。而DeepSeek团队提出的NSA(NativeSparseAtt
- 基于Python的招聘岗位数据分析系统的设计与实现
youyouxiong
python开发语言
设计和实现一个基于Python的招聘岗位数据分析系统是一个涉及多个步骤的项目。以下是一个高层次的概述,包括一些关键的组件和步骤:1.需求分析确定目标用户:了解系统将服务于哪些用户,例如招聘人员、求职者或人力资源部门。功能需求:确定系统需要实现的功能,如数据收集、数据清洗、数据分析、可视化、用户交互等。2.数据收集数据源:确定数据来源,如在线招聘网站、公司数据库、公共API等。数据抓取:使用Pyth
- 计算机毕业设计吊炸天Python+Spark地铁客流数据分析与预测系统 地铁大数据 地铁流量预测
qq_80213251
javajavaweb大数据课程设计python
开发技术SparkHadoopPython爬虫Vue.jsSpringBoot机器学习/深度学习人工智能创新点Spark大屏可视化爬虫预测算法功能1、登录注册界面,用户登录注册,修改信息2、管理员用户:(1)查看用户信息;(2)出行高峰期的10个时间段;(3)地铁限流的10个时间段;(4)地铁限流的前10个站点;(6)可视化大屏实时显示人流量信息。3、普通用户:(1)出行高峰期的10(5)可视化大
- 微构科技《VigorData一站式企业大数据平台产品白皮书》
皙姑娘
微构大数据微构科技微构大数据VigorData一站式企业大数据平台产品白皮书
本白皮书阐述了微构科技VigorData一站式企业大数据平台的定位与应用场景、系统架构、产品特性。VigorData满足企业从数据采集、存储、计算、分析挖掘到可视化展示的一站式数据处理需求,并融合前沿AI科技机器深度学习自我进化,直至与企业自身状况深度契合,帮助企业借力大数据优势深化自身业务价值体系。01产品概述1.1.产品目标一站式企业大数据平台VigorData提供了端到端一站式数据处理服务,
- 【Python】成功解决: OSError: [Errno 22] Invalid Argument
云天徽上
python运行报错解决记录python开发语言pandas机器学习numpy
【Python】成功解决:OSError:[Errno22]InvalidArgument博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者
- Python数据分析与可视化大作业项目说明(含免费代码)
yava_free
python数据分析课程设计
题目:对全球和中国互联网用户的数据分析与可视化代码下载链接:https://download.csdn.net/download/s44359487yad/89574688一、项目概述1.1.项目背景:互联网是当今时代最重要和最有影响力的技术之一,它已经深刻地改变了人们的生活、工作、学习等方面。互联网用户数据是反映互联网发展水平和潜力的重要指标,它可以帮助我们了解不同国家地区在互联网领域的优势和劣
- 深度学习笔记之自然语言处理(NLP)
电棍233
深度学习笔记自然语言处理
深度学习笔记之自然语言处理(NLP)在行将开学之时,我将开始我的深度学习笔记的自然语言处理部分,这部分内容是在前面基础上开展学习的,且目前我的学习更加倾向于通识。自然语言处理部分将包含《动手学深度学习》这本书的第十四章,自然语言处理预训练和第十五章,自然语言处理应用。并且参考原书提供的jupyternotebook资源。自然语言处理,预训练自然语言处理(NaturalLanguageProcess
- python教程89--matplotlib实例详解
颐街
JupyterLabpythonpython
12月份年底了应该做一下公司的数据统计了。Excel表只看数字很难直观的看出情况,今天使用matplotlib以公司电费为实例做一个案例介绍。开发环境:mac、python3.8、开发工具jupyterexcel数据如下:程序代码如下:mito是另外的一个可视化插件,可以生成柱状图和透视表,想了解的可以看前面的教程。通过图形界面的生成,可以很容易的看出,每个月用电量的使用情况。
- 用deepseek学大模型05逻辑回归
wyg_031113
逻辑回归机器学习人工智能
deepseek.com:逻辑回归的目标函数,损失函数,梯度下降标量和矩阵形式的数学推导,pytorch真实能跑的代码案例以及模型,数据,预测结果的可视化展示,模型应用场景和优缺点,及如何改进解决及改进方法数据推导。逻辑回归全面解析一、数学推导模型定义:逻辑回归模型为概率预测模型,输出P(y=1∣x)=σ(w⊤x+b)P(y=1\mid\mathbf{x})=\sigma(\mathbf{w}^\
- Java中的自然语言处理(NLP)工具:Stanford NLP、Apache OpenNLP、DL4J
花千树-010
RAGjava自然语言处理apachenlpAIGC
随着人工智能技术的快速发展,自然语言处理(NLP)已经成为各行各业中不可或缺的技术。对于Java开发者来说,选择合适的NLP工具可以极大地提升开发效率。今天,我们将探讨几款常用的JavaNLP工具:StanfordNLP、ApacheOpenNLP和DL4J,并通过代码实例展示如何使用它们。1.StanfordNLP:功能全面的NLP工具StanfordNLP是由斯坦福大学开发的自然语言处理工具包
- 如何系统学习 MATLAB
热爱技术。
Matlab学习matlab信息可视化
引言MATLAB(MatrixLaboratory)是一种广泛应用于工程、科学和数学领域的高效编程工具。它不仅在矩阵运算、数据分析和图形可视化等方面表现出色,还在信号处理、控制系统设计以及机器学习中占有重要地位。对于初学者和有一定编程经验的学习者来说,系统学习MATLAB可以帮助你在科研和工程项目中取得更大的进展。本文将为你提供一套系统的学习MATLAB的方法和资源,帮助你从零开始掌握这门强大的工
- Python爬虫实战:从零到一构建数据采集系统
DevKevin
爬虫python爬虫开发语言
文章目录前言一、准备工作1.1环境配置1.2选择目标网站二、爬虫实现步骤2.1获取网页内容2.2解析HTML2.3数据保存三、完整代码示例四、优化与扩展4.1反爬应对策略4.2动态页面处理4.3数据可视化扩展五、注意事项六、总结互动环节前言在大数据时代,数据采集是开发者的必备技能之一,而Python凭借其简洁的语法和丰富的库(如requests、BeautifulSoup)成为爬虫开发的首选语言。
- ELK技术栈:从入门到实践指南
点点喜欢
elk
一、ELK简介ELK是Elasticsearch、Logstash、Kibana三大开源工具的首字母缩写,现扩展为ElasticStack,新增轻量级数据采集器Beats。其核心价值在于提供一套完整的日志管理、搜索分析和可视化解决方案,广泛应用于实时数据处理、业务监控、安全分析等领域。二、核心组件详解Elasticsearch定位:分布式搜索与分析引擎,基于ApacheLucene构建。特性:实时
- 初识pytorch
m0_73286250
pytorch人工智能python
一、AI发展史二、什么是深度学习深度学习是机器学习的一个子集。为了更好地理解这种关系,我们可以将它们放在人工智能(AI)的大框架中来看。机器学习是实现人工智能的一种途径,深度学习是机器学习的一个子集,也就是说深度学习是实现机器学习的一种方法。与机器学习算法的主要区别如下图所示:三、扩展1.使用场景1)图像识别和处理2)自然语言处理(NLP)3)音频处理4)视频分析5)游戏和仿真6)自动驾驶汽车7)
- 薄膜压力分布测量系统鞋垫式足底压力分布测试
常州福普生电子科技有限公司
压力测试
引言:鞋垫式足底压力分布测试系统是一种基于传感器技术的高科技设备,通过嵌入鞋垫中的压力传感器,实时采集足底各部位的压力数据,并将数据传输到分析软件中进行处理和可视化。该系统能够精确测量足底压力的分布情况,帮助用户了解足部受力状态,从而为步态分析、疾病诊断、运动优化和鞋类设计提供科学依据。薄膜压力分布测量系统概述:薄膜压力分布测量系统主要由薄膜传感器、数据采集仪和软件组成。薄膜由压敏电阻组成,能够精
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite