作者:爱写代码的刚子
时间:2023.5.23
本篇博客主要介绍C++中动态内存管理和operator new与operator delete函数以及new和delete的实现原理
C语言:malloc、calloc、realloc
C++: C语言内存管理方式在C++中可以继续使用,C++还能通过new和delete操作符进行动态内存管理。
从图中下面的监视窗口和注释中我们可以大致了解new的作用。
申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用new[]和delete[]
new/delete 和 malloc/free最大区别是new/delete对于【自定义类型】除了开空间还会调用构造函数和析构函数
但对于内置类型除了用法方面,其他一致。
A* p2 = new A[5]{A(1),A(2),A(3),A(4) };
优化,将构造+拷贝构造优化为直接构造。new和delete是用户进行动态内存申请和释放的操作符,operator new 和operator delete是系统提供的全局函数,new在底层调用operator new全局函数来申请空间,delete在底层通过operator delete全局函数来释放空间。
底层代码:
/*
operator new:该函数实际通过malloc来申请空间,当malloc申请空间成功时直接返回;申请空间失败,
尝试执行空 间不足应对措施,如果改应对措施用户设置了,则继续申请,否则抛异常。
*/
void* __CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{
// try to allocate size bytes
void* p;
while ((p = malloc(size)) == 0)
if (_callnewh(size) == 0)
{
// report no memory
// 如果申请内存失败了,这里会抛出bad_alloc 类型异常
static const std::bad_alloc nomem;
_RAISE(nomem);
}
return (p);
}
/*
operator delete: 该函数最终是通过free来释放空间的
*/
void operator delete(void* pUserData)
{
_CrtMemBlockHeader* pHead;
RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));
if (pUserData == NULL)
return;
_mlock(_HEAP_LOCK); /* block other threads */
__TRY
/* get a pointer to memory block header */
pHead = pHdr(pUserData);
/* verify block type */
_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));
_free_dbg(pUserData, pHead->nBlockUse);
__FINALLY
_munlock(_HEAP_LOCK); /* release other threads */
__END_TRY_FINALLY
return;
}
/*
free的实现
*/
#define free(p) _free_dbg(p, _NORMAL_BLOCK)
由于涉及内存池,暂时略过。
内置类型
如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是:new/delete申请和释放的是单个元素的空间,new[]和delete[]申请的是连续空间,而且new在申请空间失败时会抛异常,malloc会返回NULL。
自定义类型
定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象。
malloc/free和new/delete的共同点是:都是从堆上申请空间,并且需要用户手动释放。
不同的地方是:
什么是内存泄漏:内存泄漏指因为疏忽或错误造成程序未能释放已经不再使用的内存的情况。内存泄漏并不
是指内存在物理上的消失,而是应用程序分配某段内存后,因为设计错误,失去了对该段内存的控制,因而造成了内存的浪费。
内存泄漏的危害:长期运行的程序出现内存泄漏,影响很大,如操作系统、后台服务等等,出现内存泄漏会导致响应越来越慢,最终卡死。
总结一下:
内存泄漏非常常见,解决方案分为两种:1、事前预防型。如智能指针等。2、事后查错型。如泄漏检测工具。