python: read excel

"""
Insurance。py
edit: geovindu,Geovin Du,涂聚文
date 2023-06-13
保险类
"""
 
import sys
import os
 
 
class Insurance:
    """
    保险类
    """
 
    def __init__(self, InsuranceName, InsuranceCost, IMonth):
        """
        保险类  构造函数
        :param  InsuranceName:  保险类型
        :param  InsuranceCost:  保险费用
        :param  IMonth:  月份
        """
        self.__InsuranceName = InsuranceName
        self.__InsuranceCost = InsuranceCost
        self.__IMonth = IMonth
 
    def get_InsuranceName(self):
        """
        得到保险名称
        :return:  返回保险名称
        """
        return self.__InsuranceName
 
    def set_InsuranceName(self, InsuranceName):
        """
        设置保险名称
        :param  InsuranceName:  输入保险名称
        :return:  none
        """
        self.__InsuranceName = InsuranceName
 
    def get_InsuranceCost(self):
        """
        获取保险费用
        :return:  返回保险费用
        """
        return self.__InsuranceCost
 
    def set_InsuranceCost(self, InsuranceCost):
        """
        设置保险费用
        :param  InsuranceCost:  输入保险费用
        :return:  none
        """
        self.__InsuranceCost = InsuranceCost
 
    def get_IMonth(self):
        """
        获取月份
        :return:  返回月份
        """
        return self.__IMonth
 
    def set_IMonth(self, IMonth):
        """
        设置月份
        :param  IMonth:  输入月份
        :return:  none
        """
        self.__IMonth = IMonth
 
    def __str__(self):
        return f"InsuranceName:  {self.__InsuranceName},  InsuranceCost:  {self.__InsuranceCost},  Month:  {self.__IMonth}"
 
 
 
"""
ReadExcelData.py
读取excel文件数据
date 2023-06-13
edit: Geovin Du,geovindu, 涂聚文
"""
import xlrd
import xlwt
import xlwings as xw
import xlsxwriter
import openpyxl as ws
import pandas as pd
import pandasql
import os
import sys
from pathlib import Path
import re
import Insurance
 
class ReadExcelData:
    """
    读EXCEL文件
 
    """
    def ReadFileName(folderPath,exif):
        """
        文读文件夹下的文件列表
        :param folderPath:
        :param exif: 文件扩展名 如:'xls','xlsx','doc', 'docx'
        :return:返回文件名称列表,包括扩展名
        """
        # 查询某文件夹下的文件名
        #folderPath=Path('C:\\Users\\geovindu\\PycharmProjects\\pythonProject\\')
        #fileList=folderPath.glob('*.xls')
        filenames=[]
        fileList = folderPath.glob('*.'+exif)
        for i in fileList:
            #stname=i.stem
            filenames.append(i.stem+'.'+exif)
        return filenames
 
    def ReadDataFile(xlspath):
        """
        读取指定一文件的数据
        :param xlspath: excel文件物理路径
        :return: 返回当前文件的数据
        """
        #print(xlspath)
        objlist = []
        dfnonoe = pd.read_excel(io=xlspath, sheet_name='Sheet1', keep_default_na=False)
        dfnonoe1 = dfnonoe.dropna(axis=1)
        row1 = dfnonoe1.loc[0:0]  #第一行 标题, 有规则的,就不需要这种处理方式
        #print(row1['Unnamed: 2'])  # 社保明细
        #print(row1['Unnamed: 3'])  # 1月缴纳明细(元)
        yl = row1['Unnamed: 2']
        yll = yl.convert_dtypes()
        yc = row1['Unnamed: 3']
        ycc = yc.convert_dtypes()
        mm = ReadExcelData.RemoveStr(ycc[0]) #提取月份数据
 
        row2 = dfnonoe1.loc[1:1] #第二行
        yl2 = row2['Unnamed: 2']  #养老
        yll2 = yl2.convert_dtypes()
        yc2 = row2['Unnamed: 3']   #费用
        ycc2 = yc2.convert_dtypes()
 
        row3 = dfnonoe1.loc[2:2] #第三行
        yl3 = row3['Unnamed: 2']   #医疗
        yll3 = yl3.convert_dtypes()
        yc3 = row3['Unnamed: 3']   #费用
        ycc3 = yc3.convert_dtypes()
        objlist.append(Insurance.Insurance(yll2,ycc2,mm))
        objlist.append(Insurance.Insurance(yll3,ycc3,mm))
        return  objlist
 
 
 
    def RemoveStr(oldstr):
        """
        去除指定的字符串
        :param oldstr: 旧字符串
        :return: 新字符串
        """
        newstr = re.sub(r'月缴纳明细(元)', "", oldstr)  #月缴纳明细(元)
        return newstr
 
 
    def clearBlankLine(oldfile,newfile):
        """
        清除文件里面的空白行
        :param oldfile: 旧文件
        :param newfile: 新文件
        :return: none
        """
        file1 = open(oldfile, 'r', encoding='utf-8') # 要去掉空行的文件
        file2 = open(newfile, 'w', encoding='utf-8') # 生成没有空行的文件
        try:
            for line in file1.readlines():
                if line == '\n':
                    line = line.strip("\n")
                file2.write(line)
        finally:
            file1.close()
            file2.close()
 
    def excelcovert():
        """
 
        :return:
        """
        app=xw.App(visible=False,add_book=False)
        folderPath=Path('C:\\Users\\geovindu\\PycharmProjects\\pythonProject\\')
        fileList=folderPath.glob('*.xls')
        for i in fileList:
            newFilePath=str(i.with_suffix('.xlsx'))
            workbook=app.books.open(i)
            workbook.api.SavaAs(newFilePath,FileFormat=56)
            workbook.close()
        app.quit()

调用:

# This is a sample Python script.
 
# Press Shift+F10 to execute it or replace it with your code.
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.
import xlrd
import xlwt
import xlwings as xw
import xlsxwriter
import openpyxl as ws
import pandas as pd
import pandasql
import os
import sys
from pathlib import Path
import re
import Insurance
import ReadExcelData
 
 
 
def print_hi(name):
    # Use a breakpoint in the code line below to debug your script.
    print(f'Hi, {name}')  # Press Ctrl+F8 to toggle the breakpoint.
 
 
 
 
 
 
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
    print_hi('PyCharm,Geovin Du')
    #https://www.digitalocean.com/community/tutorials/pandas-read_excel-reading-excel-file-in-python
    #https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.convert_dtypes.html
    #https://www.geeksforgeeks.org/args-kwargs-python/
    insura=[]
    objlist=[]
    #excelcovert()
    s = '1123*#$ 中abc国'
    str = re.sub('[a-zA-Z0-9!#$%&\()*+,-./:;<=>?@,。?★、…【】《》?!^_`{|}~\s]+', "", s)
    # 去除不可见字符
    str = re.sub('[\001\002\003\004\005\006\007\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a]+',"", str)
    print(str)
    phone = "2004-959-559 # 这是一个电话号码"
    tt="1月缴纳明细(元)"
    newtt=re.sub(r'月缴纳明细(元)',"",tt)
    print(newtt)
    # 删除注释
    num = re.sub(r'#.*$', "", phone)
    print("电话号码 : ", num)
 
    xlspath1 = r'C:\Users\geovindu\PycharmProjects\pythonProject\1月.xls'
    xlspath2 = r'C:\Users\geovindu\PycharmProjects\pythonProject\2月.xls'
    xlspath3 = r'C:\Users\geovindu\PycharmProjects\pythonProject\3月.xls'
    xlspath4 = r'C:\Users\geovindu\PycharmProjects\pythonProject\4月.xls'
    xlspath5 = r'C:\Users\geovindu\PycharmProjects\pythonProject\5月.xls'
    xlspath6 = r'C:\Users\geovindu\PycharmProjects\pythonProject\6月.xls'
    xlspath7 = r'C:\Users\geovindu\PycharmProjects\pythonProject\7月.xls'
    xlspath8 = r'C:\Users\geovindu\PycharmProjects\pythonProject\8月.xls'
    xlspath9 = r'C:\Users\geovindu\PycharmProjects\pythonProject\9月.xls'
    xlspath10 = r'C:\Users\geovindu\PycharmProjects\pythonProject\10月.xls'
    xlspath11 = r'C:\Users\geovindu\PycharmProjects\pythonProject\11月.xls'
    xlspath12 = r'C:\Users\geovindu\PycharmProjects\pythonProject\12月.xls'
 
    xlspath13 = r'C:\Users\geovindu\PycharmProjects\pythonProject\1月0.xls'
    xlspath14 = r'C:\Users\geovindu\PycharmProjects\pythonProject\2月0.xls'
 
    dfnew = pd.read_excel(r'C:\Users\geovindu\PycharmProjects\pythonProject\1月.xls')
 
 
    #dfnew = dfnew.drop(columns=[0, 1],axis=1)
    #dfnew.dropna(axis=0, how="all", inplace=True)  # 删除excel空白行代码
    #dfnew.dropna(axis=1, how="all", inplace=True)  # 删除excel空白列代码
    #dfnew.to_excel(r'C:\Users\geovindu\PycharmProjects\pythonProject\1月.xls', "1")
 
    #注:axis = 0    表示操作excel行,axis = 1    表示操作excel列
 
 
    xls1 = pd.read_excel(io=xlspath1, sheet_name='Sheet1', index_col=(2, 3), skiprows=1,keep_default_na=False)  # 从第2列至第3列,省略第一行
    #xls1 = pd.read_excel(io=xlspath1, sheet_name='Sheet1')
    xls2 = pd.read_excel(io=xlspath2, sheet_name='Sheet1', index_col=(2, 3), skiprows=1,keep_default_na=False)  # 从第2列至第3列,省略第一行
    xls3 = pd.read_excel(io=xlspath13, sheet_name='Sheet1',keep_default_na=False)  # 人工去除空行空列
    xls4 = pd.read_excel(io=xlspath14, sheet_name='Sheet1',keep_default_na=False)  # 人工去除空行空列
 
    dulist=[]
    # 封装成类操作
    dulist1 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath1)
    dulist2 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath2)
    dulist3 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath3)
    dulist4 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath4)
    dulist5 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath5)
    dulist6 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath6)
    dulist7 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath7)
    dulist8 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath8)
    dulist9 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath9)
    dulist10 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath10)
    dulist11 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath11)
    dulist12 = ReadExcelData.ReadExcelData.ReadDataFile(xlspath12)
 
    #dulist.append(dulist2)
    for Insurance.Insurance in dulist1:
         duobj=Insurance.Insurance
         dulist.append(duobj)
         #print(duobj)
    for Insurance.Insurance in dulist2:
         duobj=Insurance.Insurance
         #print(duobj)
         dulist.append(duobj)
    for Insurance.Insurance in dulist3:
         duobj=Insurance.Insurance
         dulist.append(duobj)
         #print(duobj)
    for Insurance.Insurance in dulist4:
         duobj=Insurance.Insurance
         #print(duobj)
         dulist.append(duobj)
    for Insurance.Insurance in dulist5:
         duobj=Insurance.Insurance
         dulist.append(duobj)
         #print(duobj)
    for Insurance.Insurance in dulist6:
         duobj=Insurance.Insurance
         #print(duobj)
         dulist.append(duobj)
    for Insurance.Insurance in dulist7:
         duobj=Insurance.Insurance
         dulist.append(duobj)
         #print(duobj)
    for Insurance.Insurance in dulist8:
         duobj=Insurance.Insurance
         #print(duobj)
         dulist.append(duobj)
    for Insurance.Insurance in dulist9:
         duobj=Insurance.Insurance
         dulist.append(duobj)
         #print(duobj)
    for Insurance.Insurance in dulist10:
         duobj=Insurance.Insurance
         #print(duobj)
         dulist.append(duobj)
    for Insurance.Insurance in dulist11:
         duobj=Insurance.Insurance
         dulist.append(duobj)
         #print(duobj)
    for Insurance.Insurance in dulist12:
         duobj=Insurance.Insurance
         dulist.append(duobj)
         #print(duobj)
 
    for Insurance.Insurance in dulist:
        duobj = Insurance.Insurance
        print(duobj)
 
 
 
    print("geovindu,*************")
 
    '''
    index_row = []
    # loop each row in column A
    for i in range(1, ws.max_row):
        # define emptiness of cell
        if ws.cell(i, 1).value is None:
            # collect indexes of rows
            index_row.append(i)
 
    # loop each index value
    for row_del in range(len(index_row)):
        ws.delete_rows(idx=index_row[row_del], amount=1)
        # exclude offset of rows through each iteration
        index_row = list(map(lambda k: k - 1, index_row))
    '''
    #改列名 https://stackoverflow.com/questions/35369382/delete-empty-row-openpyxl
    #xls1.rename(columns={'Unnamed: 0': 'new column name'}, inplace=True)
 
    print(xls1)
 
    print("****")
    print(xls2)
    print(xls3)
    print(xls4)
    print(xls1.columns.ravel())
 
    dfnonoe = pd.read_excel(io=xlspath1, sheet_name='Sheet1',keep_default_na=False)
    #dfnonoe1 = dfnonoe.loc[:, ~dfnonoe.columns.str.contains('^Unnamed')]
    #dfnonoe.rename(columns={'Unnamed: 3': '1月缴纳明细'}, inplace=True)
    dfnonoe1 = dfnonoe.dropna(axis=1)
    dfnonoe1.loc[2:2]
    print("none:",dfnonoe1)
    t=dfnonoe1.loc[0:0]
    #print(t)
 
 
 
 
 
    print(t['Unnamed: 2']) #社保明细
    print(t['Unnamed: 3']) #1月缴纳明细(元)
    yy=t['Unnamed: 3']
    print(yy) #.Replace('(元)','')
    #ynew='(元)'.join(filter(str.isalnum, yy))
    #re.sub('[a-zA-Z0-9'!"#$%&\'()*+,-./:;<=>?@,。?★、…【】《》?“”‘'![\\]^_`{|}~\s]+', "", yy)
    #ynew =re.sub('[a-zA-Z0-9'!"#$%&\'()*+,-./:;<=>?@,。?★、…【】《》?“”‘'![\\]^_`{|}~\s]+',"",yy)
    #print(ynew)
    t1=dfnonoe1.loc[1:1]
 
    print(t1['Unnamed: 2']) #养老
    yl=t1['Unnamed: 2']
    yll=yl.convert_dtypes()
    print(yll)
    print(t1['Unnamed: 3']) #10
    yc=t1['Unnamed: 3']
    ycc=yc.convert_dtypes()
    print(type(yc))
    t3=dfnonoe1.loc[2:2]
    print(t3['Unnamed: 2']) #医疗
    ll=t3['Unnamed: 2']
    lll=ll.convert_dtypes()
    print(lll)
    print(t3['Unnamed: 3']) #20
    lc=t3['Unnamed: 3']
    lcc=lc.convert_dtypes()
    print(lcc)
    f=t['Unnamed: 3']
    print(type(f))  #pandas.core.series.Series
    print(f.convert_dtypes())
    print(f[0])
    print(ReadExcelData.ReadExcelData.RemoveStr(f[0]))
    ff=ReadExcelData.ReadExcelData.RemoveStr(f[0])
    print(ff)
    #m=re.sub(r'月缴纳明细(元)',"",f) #ReadExcelData.RemoveStr(t['Unnamed: 3'])
 
    #objins = Insurance(yll,ycc,ff)
    insura.append([yll,ycc,ff])
    insura.append([lll,lcc,ff])
    for i in insura:
        print(i[0],i[1],i[2])
 
    #print(objins)
    #Insurance.Insurance(yll,ycc,ff)
    #Insurance.Insurance(lll,lcc,ff)
    '''
    objlist.append(Insurance.Insurance(yll,ycc,ff))
    objlist.append(Insurance.Insurance(lll,lcc,ff))
    for Insurance.Insurance in objlist:
         obj=Insurance.Insurance
         print(obj)
   '''
 
    print("**************")
 
    df = pd.DataFrame()
    df1=pd.DataFrame()
    out = pd.concat([xls1,xls2])
    out1=pd.concat([xls3,xls4])
    df = pd.concat([df, out])
    df1=pd.concat([df1,out1])
    print(xls3['1月缴纳明细(元)'])
    sum=0;
    dl=xls3['1月缴纳明细(元)']
    dl2=xls4['2月缴纳明细(元)']
    for ddd in dl:
        sum=sum+ddd
 
    print(dl[0])  #0为养老
    print(dl[1])  #1为医疗
    print("sum:",sum)
    #df3 = df.dropna(axis=1, how='any', thresh=None, subset=None, inplace=False)  # 删除全部为空的行
    #df4 = df.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)  # 删除全部为空的行
    # 设置子集:删除第5、6、7行存在空值的列
    #print(df.dropna(axis=1, how='any', subset=[0, 1]))
    print(df1)
    print(df)
    print(df.shape)
    print(df.columns)
    print(df.index)
    print(df1)
    print(df1.shape)
    print(df1.columns)
    print(df1.index)
    print(df1.groupby(['社保明细']).sum())
 
    print(df.groupby(['社保明细']).sum())
 
 
    #df.name='社保明细'
    #df.loc[0]
    #df.loc[0:1]
    for i, j in df.iterrows():
        print(i, j)
        print()
    for i in df.itertuples():
        print(i)
    # 查询某文件夹下的文件名
    folderPath=Path(r'C:\\Users\\geovindu\\PycharmProjects\\pythonProject\\')
    fileList=folderPath.glob('*.xls')
    for i in fileList:
        stname=i.stem
        print(stname)
    # 查询文件夹下的文件  print(os.path.join(path, "User/Desktop", "file.txt"))
    dufile=ReadExcelData.ReadExcelData.ReadFileName(folderPath,'xls')
    for f in dufile:
        print(os.path.join(folderPath,f))
 
 
# See PyCharm help at https://www.jetbrains.com/help/pycharm/

python: read excel_第1张图片

python: read excel_第2张图片

你可能感兴趣的:(Python,excel,python,开发语言)