大模型部署实战(三)——ChatGLM-6B


❤️觉得内容不错的话,欢迎点赞收藏加关注,后续会继续输入更多优质内容❤️

有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)

博主原文链接:https://www.yourmetaverse.cn/llm/213/

(封面图由文心一格生成)

大模型部署实战(三)——ChatGLM-6B

ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。 ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答。本文基于ChatGLM官方代码演示如何部署ChatGLM模型。
在线体验地址:

  • 博主自己部署的地址:http://www.yourmetaverse.cn:39002/

1.部署准备

1.1 硬件环境

量化等级 最低 GPU 显存(推理) 最低 GPU 显存(高效参数微调)
FP16(无量化) 13 GB 14 GB
INT8 8 GB 9 GB
INT4 6 GB 7 GB

1.2 python环境

protobuf
transformers==4.27.1
cpm_kernels
torch>=1.10
gradio
mdtex2html
sentencepiece
accelerate

1.3 模型下载

可以从以下网址下载ChatGLM的模型参数:
https://huggingface.co/THUDM/chatglm-6b/tree/main
int8量化后的模型参数可以从下面网址下载:
https://huggingface.co/THUDM/chatglm-6b-int8/tree/main
int4量化后的模型参数可以从下面网址下载:
https://huggingface.co/THUDM/chatglm-6b-int4/tree/main

2. 模型部署

首先说明一下项目的文件系统目录

-chatglm-6b
-chatglm-6b-int8
-chatglm-6b-int4
-launch.py
import os
from transformers import AutoModel, AutoTokenizer
import gradio as gr
import mdtex2html
# 设置GPU ID
os.environ['CUDA_VISIBLE_DEVICES'] = "0"

# 这里需要将模型路径修改为你自己下载ChatGLM模型的路径,我这里默认下载到./chatglm-6b路径下面
tokenizer = AutoTokenizer.from_pretrained("./chatglm-6b", trust_remote_code=True)
# 这里需要将模型路径修改为你自己下载ChatGLM模型的路径,我这里默认下载到./chatglm-6b路径下面
model = AutoModel.from_pretrained("./chatglm-6b", trust_remote_code=True).half().cuda()
model = model.eval()

"""Override Chatbot.postprocess"""


def postprocess(self, y):
    if y is None:
        return []
    for i, (message, response) in enumerate(y):
        y[i] = (
            None if message is None else mdtex2html.convert((message)),
            None if response is None else mdtex2html.convert(response),
        )
    return y


gr.Chatbot.postprocess = postprocess


def parse_text(text):
    """copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split('`')
            if count % 2 == 1:
                lines[i] = f'
{items[-1]}">'
            else:
                lines[i] = f'
'
else: if i > 0: if count % 2 == 1: line = line.replace("`", "\`") line = line.replace("<", "<") line = line.replace(">", ">") line = line.replace(" ", " ") line = line.replace("*", "*") line = line.replace("_", "_") line = line.replace("-", "-") line = line.replace(".", ".") line = line.replace("!", "!") line = line.replace("(", "(") line = line.replace(")", ")") line = line.replace("$", "$") lines[i] = "
"
+line text = "".join(lines) return text def predict(input, chatbot, max_length, top_p, temperature, history): chatbot.append((parse_text(input), "")) for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p, temperature=temperature): chatbot[-1] = (parse_text(input), parse_text(response)) yield chatbot, history def reset_user_input(): return gr.update(value='') def reset_state(): return [], [] with gr.Blocks() as demo: gr.HTML("""

ChatGLM

"""
) chatbot = gr.Chatbot() with gr.Row(): with gr.Column(scale=4): with gr.Column(scale=12): user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style( container=False) with gr.Column(min_width=32, scale=1): submitBtn = gr.Button("Submit", variant="primary") with gr.Column(scale=1): emptyBtn = gr.Button("Clear History") max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True) top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True) temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True) history = gr.State([]) submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history], show_progress=True) submitBtn.click(reset_user_input, [], [user_input]) emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True) demo.queue().launch(share=False,server_name="127.0.0.1", server_port=7886, inbrowser=False)

该代码中需要修改的地方已经在代码块上标出。


❤️觉得内容不错的话,欢迎点赞收藏加关注,后续会继续输入更多优质内容❤️

有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)

你可能感兴趣的:(自然语言处理,python,人工智能,机器学习)