I2C协议

i2c硬件电路

i2c总线连接图:
I2C协议_第1张图片
注:

  1. i2c的SDA和SCL都需要上拉电阻,改变上拉电阻大小可调节I2C总线的上拉强度,上拉电阻用1k~100k不等,小了驱动能力就强,但电流就大了。
  2. 不同内核版本上的驱动不一样,I2C可以跑的最高频率也有区别。

i2c通信协议

i2c的时序分为四部分:起始信号,数据传输,应答信号,停止信号:
I2C协议_第2张图片

  1. 起始信号:当SCL高电平时,SDA有一个下降沿。
  2. 数据传输:bit7~bit0是数据位。
  3. 应答信号:在发送完8bit的数据后,发送方会释放SDA(这时候SDA被拉高,因为i2c有上拉电阻),这时候如果接收方正常接收到数据,会在第9个时钟拉低SDA,如果没有拉低,会被视为NACK,会出现i2c挂死。
  4. 停止信号:当SCL高电平时,SDA有一个上升沿。
    注:
    数据传输过程SDA变化必须在SCL低电平时变化,在SCL为高电平时保持,否则会被误认为是起始信号或者停止信号。

i2c数据格式

  1. i2c数据传输时,在起始信号之后会发送一个i2c的从机地址,这个地址会包含读写信息,即前面7bit是从机地址,第8bit代表数据的读写,0代表发送数据(写),1代表请求数据(读)。
  2. i2c数据传输时,MSB在前,LSB在后,也就是先传高位再传低位。

i2c常见问题

  1. 当 log: "timeout, ipd: 0x00, state: 1"出现时, 请检查硬件上拉是否给电或者 I2C pin脚的 iomux 值是否设置正确;
  2. 如果调用 i2c_transfer 返回值为-6 时候, 表示为 NACK 错误, 即对方设备无应答响应,这种情况一般为外设的问题, 常见的有以下几种情况:
    A. I2C 地址错误, 解决方法是测量 i2c 波形, 确认是否 i2c 设备地址错误;
    B. I2C slave 设备不处于正常工作状态, 比如未给电, 错误的上电时序等;
    C. 时序不符合 I2C slave 设备所要求也会产生 NACK 信号, 比如下面的第三点;
  3. 当外设对于读时序要求中间是 stop 信号,而不是 repeat start 信号的时候, 需要调用两次i2c_transfer, 分别将写寄存器地址的操作与读数据操作, 作两次 I2C 调用, 修改如下:
staticint i2c_read_bytes(struct i2c_client *client, u8 cmd, u8 *data, u8 data_len)
{
    struct i2c_msg msgs[2];
    int ret;
    u8 *buffer;
    buffer = kzalloc(data_len, GFP_KERNEL);
    if (!buffer)
        return-ENOMEM;;
    msgs[0].addr = client->addr;
    msgs[0].flags = client->flags;
    msgs[0].len = 1;
    msgs[0].buf = &cmd;
    ret = i2c_transfer(client->adapter, msgs, 1);
    if (ret < 0) {
        dev_err(&client->adapter->dev, "i2c read failed\n");
        kfree(buffer);
        return ret;
    }
    msgs[1].addr = client->addr;
    msgs[1].flags = client->flags | I2C_M_RD;
    msgs[1].len = data_len;
    msgs[1].buf = buffer;
    ret = i2c_transfer(client->adapter, &msgs[1], 1);
    if (ret < 0)
        dev_err(&client->adapter->dev, "i2c read failed\n");
    else
        memcpy(data, buffer, data_len);
    kfree(buffer);
    return ret;
}

实验

kernel读写i2c

注:板子上i2c总线4有个i2c设备,i2c地址为0x6a
以下demo是通过kernel驱动读写i2c设备。
dts修改:

&i2c4 {
         status = "okay";
         i2ctest: i2ctest@0 {
                compatible = "rockchip,i2c-test";
                reg = <0x6a>;
                status = "okay";
        };
};

kernel驱动代码:

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#include 
#include 
#include 
#include 
#include 
/*
static int i2c_read_bytes(struct i2c_client *client, u8 cmd, u8 *data, u8 data_len)
{
	struct i2c_msg msgs[2];
	int ret;
	u8 *buffer;
	buffer = kzalloc(data_len, GFP_KERNEL);
	if (!buffer)
		return-ENOMEM;;
	msgs[0].addr = client->addr;
	msgs[0].flags = client->flags;
	msgs[0].len = 1;
	msgs[0].buf = &cmd;
	msgs[1].addr = client->addr;
	msgs[1].flags = client->flags | I2C_M_RD;
	msgs[1].len = data_len;
	msgs[1].buf = buffer;
	ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
	if (ret < 0)
		dev_err(&client->adapter->dev, "i2c read failed\n");
	else
		memcpy(data, buffer, data_len);
	kfree(buffer);
	return ret;
}	
*/
static int i2c_write_bytes(struct i2c_client *client, u8 *data, u8 data_len)
{
	struct i2c_msg msgs[1];
	u8 *buffer;
	int ret = 0;

	printk("---->:%s\n",__func__);
	buffer = kzalloc(data_len + 1, GFP_KERNEL);
	if (!buffer)
		return-ENOMEM;
	memcpy(buffer, data, data_len);
	msgs[0].addr = client->addr;
	msgs[0].flags = client->flags;
	msgs[0].len = data_len;
	msgs[0].buf = buffer;
	ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
	if (ret < 0)
		dev_err(&client->adapter->dev, "i2c write failed\n");
		kfree(buffer);
	return ret;
}

static struct of_device_id i2c_test_of_match[] = {
	{ .compatible = "rockchip,i2c-test"},
	{ },
};
MODULE_DEVICE_TABLE(of, i2c_test_of_match);

static int  i2c_test_probe(struct i2c_client *i2c, const struct i2c_device_id *id)
{
	
	const struct of_device_id *match;
	uint8_t pre_cmd_data[2]={0};	
	int i;
	printk("---->:%s\n",__func__);

	pre_cmd_data[0]=0x0f;
	pre_cmd_data[1]=0xbb;

	if (i2c->dev.of_node) {
		match = of_match_device(i2c_test_of_match, &i2c->dev);
		if (!match) {
			dev_err(&i2c->dev,"Failed to find matching dt id\n");
			return -EINVAL;
		}
	}
	for(i=20; i>=0; i--){
		i2c_write_bytes(i2c,pre_cmd_data,2);
		mdelay(100);
	}
	return 0;

}
static const struct i2c_device_id i2c_ids[] = {
	{ "i2c-test" },
	{ },
};
MODULE_DEVICE_TABLE(i2c, i2c_ids);

static struct i2c_driver i2c_test_driver = {
	.driver = {
		.name = "i2c-test",
		.owner = THIS_MODULE,
		.of_match_table =of_match_ptr(i2c_test_of_match),
	},
	.probe = i2c_test_probe,
	.id_table = i2c_ids,
};

module_i2c_driver(i2c_test_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("jstl ");
MODULE_DESCRIPTION("i2c test driver");

测得波形
I2C协议_第3张图片
从波形读得数据:0xd4 0x0f 0xbb
其中:0xd4为:i2c地址+读写标志,即:0xd4(8b’11010100)=0x6a(7b’1101010)+写标志(1b’0)
0x0f 0xbb为数据

应用层读写i2c

注:板子上i2c总线4有个i2c设备,i2c地址为0x6a
以下demo是直接在应用层读写i2c设备,因此,kernel中只要把i2c接口打开即可。
dts把i2c4开启:

&i2c4 {
    status = "okay";
};

应用层代码:

#include "encryptic.h"
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include  
#include 
#include 

#define LOG_TAG 	"encryptchip"
#define DEBUG

#define I2C_M_WR        0x0000
#define I2C_M_RD		0x0001	/* read data, from slave to master */

#define IIC_MSGBUF_LENGTH		256
#define IIC_READ_COUNT_MAX		50

#define IC_CMD_SN_LENGTH		19
#define IC_SN_OFFSET			1
#define IC_SN_LENGTH			16
#define IC_CMD_VER_LENGTH		5
#define IC_VER_OFFSET			1
#define IC_VER_LENGTH			2
#define IC_CERT_RANDOM_OFFSET	1
#define IC_CERT_RANDOM_LENGTH	48
#define IC_CERT_DATA_OFFSET		49
#define IC_CERT_DATA_LENGTH		131
#define IC_CERT_LENGTH			182
#define IC_SIGN_LENGTH			51
#define IC_CMD_KEY_LENGTH		51
#define IC_KEY_OFFSET			1

int I2C_WriteNbyte(unsigned char i2c_no, unsigned char dev_addr, unsigned char reg_addr, unsigned char send_len, unsigned char send_buf[])
{
    int tmp_ret = 0;
    struct i2c_rdwr_ioctl_data ctl_data;
    int device_fd = -1;
 
    if (send_buf == NULL) {
		printf("\nwrite data buf is NULL\n");
        return -1;
    }
 		if (send_len < 1)
 			{
 				printf("write data length error \n");
 				return -1;
 			}
    if (i2c_no == 7) {
        device_fd = open("/dev/i2c-7", O_RDWR); 
     } else if (i2c_no == 4) {
        device_fd = open("/dev/i2c-4", O_RDWR);        
    } else if (i2c_no == 2) {
        device_fd = open("/dev/i2c-2", O_RDWR);
    } else if (i2c_no == 1) {
        device_fd = open("/dev/i2c-1", O_RDWR);
    } else {
        device_fd = open("/dev/i2c-0", O_RDWR);
    }
    if (device_fd < 0) {
				printf("\nwrite open error!\n");
        return -1;
    }
 		
 	ctl_data.nmsgs = 1;
    ctl_data.msgs = (struct i2c_msg *)malloc(ctl_data.nmsgs * sizeof(struct i2c_msg));  
    if (!ctl_data.msgs){  
        printf("Memory alloc error\n");   
        return 0;  
    }  
 		
    ctl_data.msgs[0].len = send_len+1;
    ctl_data.msgs[0].addr = dev_addr;  
    ctl_data.msgs[0].flags = I2C_M_WR;
    ctl_data.msgs[0].buf	= (unsigned char*)malloc(send_len+1);
    ctl_data.msgs[0].buf[0]	= reg_addr;
    
    memcpy(&ctl_data.msgs[0].buf[1], send_buf, send_len);

		#ifdef DEBUG
		for (int i=0; i<send_len+1; i++)
		{
			printf("\n %02x",ctl_data.msgs[0].buf[i]);
		}
		printf("\n");
		#endif
		
    tmp_ret = ioctl(device_fd, I2C_RDWR, &ctl_data);
    printf(":send_len=%d\n",ctl_data.msgs[0].len);
    if (tmp_ret < 0)
    {
			printf("\nwrite error!\n");
			close(device_fd);
			
       return -1;
    }
 
    usleep(10 * 1000);
    if (device_fd >= 0) {
        close(device_fd);
        device_fd = -1;
    }
    return tmp_ret;
}
 
int I2C_ReadNbyte(unsigned char i2c_no, unsigned char dev_addr, unsigned char reg_addr, unsigned char rev_len, unsigned char rev_buf[])
{
    int tmp_ret = -1;
    struct i2c_rdwr_ioctl_data ctl_data;
    int device_fd = -1;

    if (rev_buf == NULL) {
		printf("\nread data buf is NULL\n");
        return -1;
    }

    if (i2c_no == 7) {
        device_fd = open("/dev/i2c-7", O_RDWR); 
    } else if (i2c_no == 4) {
        device_fd = open("/dev/i2c-4", O_RDWR);        
    } else if (i2c_no == 2) {
        device_fd = open("/dev/i2c-2", O_RDWR);
    } else if (i2c_no == 1) {
        device_fd = open("/dev/i2c-1", O_RDWR);
    } else {
        device_fd = open("/dev/i2c-0", O_RDWR);
    }
    if (device_fd < 0) {
		printf("\nread open error!\n");
        return -1;
    }
 
 		ctl_data.nmsgs = 2;
    ctl_data.msgs = (struct i2c_msg *)malloc(ctl_data.nmsgs * sizeof(struct i2c_msg));  
    if (!ctl_data.msgs){  
        printf("Memory alloc error\n");   
        return 0;  
    }  
 	
    ctl_data.msgs[0].len = 1;
    ctl_data.msgs[0].addr = dev_addr;  
    ctl_data.msgs[0].flags = I2C_M_WR;
    ctl_data.msgs[0].buf	= (unsigned char*)malloc(1); 
    ctl_data.msgs[0].buf[0] = reg_addr;
        
    ctl_data.msgs[1].len = rev_len;  
    ctl_data.msgs[1].addr = dev_addr;  
    ctl_data.msgs[1].flags = I2C_M_RD;
    ctl_data.msgs[1].buf = (unsigned char*)malloc(rev_len);
 
    memset(ctl_data.msgs[1].buf, 0, rev_len);
 
    tmp_ret = ioctl(device_fd, I2C_RDWR, &ctl_data);
    if (tmp_ret < 0)
    {
			printf("\nread error!\n");
			close(device_fd);
			
       return -1;
    }
 		memcpy(rev_buf, ctl_data.msgs[1].buf, rev_len);

    usleep(10 * 1000);
 		
    if (device_fd >= 0) {
        close(device_fd);
        device_fd = -1;
    }
    return tmp_ret;
}

static bool cmdToBuffer(unsigned char *cmd, int cmdlen, unsigned char databuf[])
{
	int i;
	unsigned char Xor;
	
	Xor = cmdlen;
	databuf[0] = cmdlen;
	
	for(i=0;i<cmdlen;i++)
	{
		databuf[i+1] = cmd[i];
		Xor ^= cmd[i];
	}
	databuf[i+1] = Xor;
	return true;
}

static int checkResult(unsigned char Result[], int ResultLen)
{
	int i;
	unsigned char Xor;

	if(Result[ResultLen-2] != 0x90)
		return 1;
	
	Xor = 0;
	for(i=0;i<(ResultLen-1);i++)
	{
		Xor ^= Result[i];
	}

	if(Xor != Result[i])
		return 2;
	return 0;
}

void EncryptIC_Init(void)
{
	printf("\nEncryptIC_Init\n");
}

int iic_send_recv(char* send, int send_len,char* recv,int recv_len)
{
	int i = 0;
	unsigned char buf[128];
	int nret;
	unsigned char send_data[10];
	
	memset(send_data, 0, sizeof(send_data));
	cmdToBuffer(send, send_len, send_data);

	while(1)
	{ 
			sleep(2);
			
			#ifdef DEBUG
			//send_data[0]= 0x0f;			
			printf("write data:\n");
			for(i=0;i<3;i++)
				printf("%02x",send_data[i]);
			printf("\n");
			#endif
			//I2C_WriteNbyte(4, 0x2a, 0x54, 3, send_data);
			I2C_WriteNbyte(4, 0x6a, 0x06, 1, send_data);
			usleep(10*1000);
			sleep(1);
			
			memset(buf, 0, sizeof(buf));
			
			//I2C_ReadNbyte(4, 0x2a, 0x55, recv_len+2, buf);
			//I2C_ReadNbyte(4, 0x6a, 0x06, 1, buf);
			
			//for(i = 0; i < IIC_READ_COUNT_MAX; i++) 
			{
				//if(I2C_ReadNbyte(7, 0x2a, 0, recv_len+2, buf) >= 0)
					//break;
			}
			
			//if(i >= IIC_READ_COUNT_MAX)
				//return -1;
			
			#ifdef DEBUG
			printf("read data:\n");
			for(i=0;i<0x12;i++)
				printf("%02x",buf[i]);
			printf("\n");
			#endif	
}
	nret = checkResult(buf, recv_len+2);
	if(nret != 0)
		return nret;
	
	for(i=0;i<recv_len;i++)
		recv[i] = buf[i+1];
		
	return 0;
}
int main()
{
	int ret = 0;
	unsigned char read_cert[1] = {0x01};
	unsigned char cert_buf[128] = {0};
	
	ret = iic_send_recv(read_cert,1,cert_buf,0x12);
		
	printf("\nret:%d\n",ret);
	
	#ifdef DEBUG
	printf("cert_buf:\n");
	for(int i=0;i<113;i++)
		printf("%02x",cert_buf[i]);
	#endif
	return 0;
}

执行应用:

root@linaro-alip:~# encryptic
write data:
010100

06
01
<debug>:send_len=2
read data:
000000000000000000000000000000000000

测得波形
I2C协议_第4张图片
从波形读得数据:0xd4 0x06 0x01
其中:0xd4为:i2c地址+写标志,即:0xd4(8b’11010100)=0x6a(7b’1101010)+写标志(1b’0)
0x06 0x01为数据。

你可能感兴趣的:(ROCKCHIP,基本通信协议,嵌入式硬件)