根据IDC作出的估测,数据一直都在以每年50%的速度增长,也就是说每两年就增长一倍(大数据摩尔定律)
人类在最近两年产生的数据量相当于之前产生的全部数据量
预计到2020年,全球将总共拥有35ZB的数据量,相较于2010年,数据量将增长近30倍
大数据是由结构化和非结构化数据组成的:
从数据的生成到消耗,时间窗口非常小,可用于生成决策的时间非常少
1秒定律:这一点也是和传统的数据挖掘技术有着本质的不同
以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒,但是具有很高的商业价值
图灵奖获得者、著名数据库专家Jim Gray 博士观察并总结人类自古以来,在科学研究上,先后历经了实验、理论、计算和数据四种范式
零售行业
零售行业大数据应用有两个层面,一个层面是零售行业可以了解客户的消费喜好和趋势,进行商品的精准营销,降低营销成本。另一个层面是依据客户购买的产品,为客户提供可能购买的其他产品,扩大销售额,也属于精准营销范畴。
金融行业
(1)银行数据应用场景
利用数据挖掘来分析出一些交易数据背后的商业价值。
(2)保险数据应用场景
用数据来提升保险产品的精算水平,提高利润水平和投资收益。
(3)证券数据应用场景
对客户交易习惯和行为分析可以帮助证券公司获得更多的收益。
医疗行业
医疗行业拥有大量的病例、病理报告、治愈方案、药物报告等,通过对这些数据进行整理和分析将会极大地辅助医生提出治疗方案,帮助病人早日康复。可以构建大数据平台来收集不同病例和治疗方案,以及病人的基本特征,建立针对疾病特点的数据库,帮助医生进行疾病诊断。
教育行业
通过大数据的分析来优化教育机制,也可以作出更科学的决策,这将带来潜在的教育革命,在不久的将来,个性化学习终端将会更多地融入学习资源云平台,根据每个学生的不同兴趣爱好和特长,推送相关领域的前沿技术、资讯、资源乃至未来职业发展方向。
农业行业
借助于大数据提供的消费能力和趋势报告,政府可为农业生产进行合理引导,依据需求进行生产,避免产能过剩造成不必要的资源和社会财富浪费。
环境行业
借助于大数据技术,天气预报的准确性和实效性将会大大提高,预报的及时性将会大大提升,同时对于重大自然灾害如龙卷风,通过大数据计算平台,人们将会更加精确地了解其运动轨迹和危害的等级,有利于帮助人们提高应对自然灾害的能力。
智慧城市
大数据技术可以了解经济发展情况、各产业发展情况、消费支出和产品销售情况等,依据分析结果,科学地制定宏观政策,平衡各产业发展,避免产能过剩,有效利用自然资源和社会资源,提高社会生产效率。大数据技术也能帮助政府进行支出管理,透明合理的财政支出将有利于提高公信力和监督财政支出。
大数据的采集通常采用多个数据库来接收终端数据,包括智能硬件端、多种传感器端、网页端、移动APP应用端等,并且可以使用数据库进行简单的处理工作。
常用的数据采集的方式主要包括以下几种:
通常来说,如今大数据方面有四种语言可以选择:
统计与分析主要是利用分布式数据库,或分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总,以满足大多数常见的分析需求,在这些方面可以使用R语言。
虽然R很适合分析数据,但是就一般用途而言不太擅长。可以用R构建模型,但是需要考虑将模型转换成Scala或Python,才能用于生产环境,不太可能使用这种语言编写一种集群控制系统。
数据挖掘是创建数据挖掘模型的一组试探法和计算方法,通过对提供的数据进行分析,查找特定类型的模式和趋势,最终形成创建模型。
大数据产业是指一切与支撑大数据组织管理和价值发现相关的企业经济活动的集合
云计算、大数据和物联网代表了IT领域最新的技术发展趋势,三者相辅相成,既有联系又有区别。
云计算实现了通过网络提供可伸缩的、廉价的分布式计算能力,用户只需要在具备网络接入条件的地方,就可以随时随地获得所需的各种IT资源。
云计算关键技术包括:虚拟化、分布式存储、分布式计算、多租户等。
云计算产业作为战略性新兴产业,近些年得到了迅速发展,形成了成熟的产业链结构,产业涵盖硬件与设备制造、基础设施运营、软件与解决方案供应商、基础设施即服务(IaaS)、平台即服务(PaaS)、软件即服务(SaaS)、终端设备、云安全、云计算交付/咨询/认证等环节。
物联网中的关键技术包括识别和感知技术(二维码、RFID、传感器等)、网络与通信技术、数据挖掘与融合技术等。
物联网已经广泛应用于智能交通、智慧医疗、智能家居、环保监测、智能安防、智能物流、智能电网、智慧农业、智能工业等领域,对国民经济与社会发展起到了重要的推动作用
完整的物联网产业链主要包括核心感应器件提供商、感知层末端设备提供商、网络提供商、软件与行业解决方案提供商、系统集成商、运营及服务提供商等六大环节。