- 深度学习:从神经网络到智能应用
Jason_Orton
深度学习神经网络人工智能机器学习
目录引言一.什么是深度学习?二.深度学习的基本原理1.神经网络的组成2.激活函数3.反向传播(Backpropagation)三.深度学习的常见模型四.深度学习的应用场景五.深度学习的挑战与未来结语引言深度学习(DeepLearning)作为机器学习的一个分支,近年来在人工智能领域取得了革命性的进展。无论是语音识别、图像识别,还是自动驾驶、自然语言处理,深度学习都在推动着技术的发展和行业的变革。那
- 云上玩转DeepSeek系列之五:实测优化16%, 体验FlashMLA加速DeepSeek-V2-Lite推理
deepseekllm人工智能
2月25日,DeepSeek-AI面向社区开源了其技术成果FlashMLA(https://github.com/deepseek-ai/FlashMLA),这是一个面向推理优化的高效多层注意力(Multi-HeadLatentAttention)解码内核。该技术通过优化多头潜在注意力机制和分页KV缓存系统,显著提升了大语言模型的长序列处理能力与推理效率。我们第一时间在人工智能平台PAI上进行拆箱
- 《深度揭秘:生成对抗网络如何重塑遥感图像分析精度》
程序猿阿伟
生成对抗网络人工智能机器学习
在当今数字化时代,遥感图像作为获取地球表面信息的重要数据源,广泛应用于城市规划、农业监测、环境评估等诸多领域。然而,如何从海量的遥感数据中提取高精度的信息,一直是学术界和工业界共同面临的挑战。生成对抗网络(GAN)的出现,为提升人工智能在遥感图像分析中的精度开辟了全新的路径。生成对抗网络:技术基石剖析生成对抗网络由生成器(Generator)和判别器(Discriminator)组成,二者通过对抗
- 软件开发:创新与挑战并存的旅程
javascriptphp
在当今数字化时代,软件开发已成为推动社会进步和经济发展的核心力量,它宛如一座桥梁,连接着现实世界与数字世界,为人们的生活和工作带来了前所未有的便利和效率。编程基础:基石与翅膀编程语言精通:开发人员需熟练掌握至少一门编程语言,如Java、Python或C++等。不同的编程语言适用于不同的应用场景,如Java常用于企业级应用开发,Python在数据科学和人工智能领域应用广泛,C++则在性能要求极高的系
- 如何利用GPT创作诗歌与短篇故事赚钱
在当今社会,人工智能技术已经广泛应用于各个领域,其中包括创意写作。GenerativePre-trainedTransformer(GPT)作为一种强大的自然语言处理工具,为普通人提供了创作诗歌和短篇故事的新途径,并能够通过这些创作实现赚钱的机会。如何利用GPT进行诗歌和短篇故事创作?生成创作:GPT能够根据输入的提示或主题生成连贯、富有想象力的文本。对于诗歌,你可以给出一些词语或主题,让GPT根
- 《深度揭秘:生成对抗网络如何重塑遥感图像分析精度》
人工智能深度学习
在当今数字化时代,遥感图像作为获取地球表面信息的重要数据源,广泛应用于城市规划、农业监测、环境评估等诸多领域。然而,如何从海量的遥感数据中提取高精度的信息,一直是学术界和工业界共同面临的挑战。生成对抗网络(GAN)的出现,为提升人工智能在遥感图像分析中的精度开辟了全新的路径。生成对抗网络:技术基石剖析生成对抗网络由生成器(Generator)和判别器(Discriminator)组成,二者通过对抗
- 使用AWS服务Amazon Bedrock构建大模型应用
西京刀客
AIaiawsbedrock
文章目录背景AmazonBedrock支持多模型选择实验demo列出AmazonBedrock服务支持的模型从读取用户评论、调用AmazonBedrock模型进行分类如何利用AWS的嵌入模型进行文本处理和分析背景2023年,生成式人工智能、大模型、ChatGPT等概念无处不在,但是到底什么是生成式人工智能?和之前的人工智能有什么区别?和大模型、Chatgpt的关系是什么?生成式人工智能(genAI
- 《深度剖析:生成对抗网络中生成器与判别器的高效协作之道》
程序猿阿伟
生成对抗网络人工智能机器学习
在人工智能的前沿领域,生成对抗网络(GAN)以其独特的对抗学习机制,为数据生成和处理带来了革命性的变革。生成器与判别器作为GAN的核心组件,它们之间的协作效率直接决定了GAN在图像生成、数据增强、风格迁移等众多应用中的表现。深入探究二者如何实现更高效的协作,不仅是优化GAN性能的关键,也为解锁人工智能更多创新应用场景提供了可能。生成器与判别器:GAN的核心架构解析生成器(Generator)的使命
- 医院HIS接入大模型:算力基础设施与训练能力的深度剖析与测算
Allen_LVyingbo
数智化医院2025健康医疗人工智能动态规划python
一、引言1.1研究背景与意义在数字化医疗快速发展的当下,医院信息系统(HospitalInformationSystem,HIS)作为医疗信息化的核心枢纽,承载着患者诊疗信息、医院运营管理等关键数据,对提升医疗服务质量、优化医院管理流程起着至关重要的作用。然而,传统HIS在面对日益增长的医疗数据量和复杂的临床需求时,逐渐显露出分析决策能力不足、智能化程度低等短板。随着人工智能技术的飞速发展,大模型
- Codeforces Round 986 (Div. 2) ABCD
lskkkkkkkkkkkk
题解C++c++
https://codeforces.com/contest/2028A.Alice’sAdventuresin“Chess”题意有一个无限大的地图,地图的原点有一个机器人,即他起初在坐标(0,0)(0,0)(0,0)处,并且会不断重复一段指令,指令的长度为nnn,指令只包含NESW字符,表示像对应的方向移动。问机器人能否在某时刻到达坐标(a,b)(a,b)(a,b)处。需要注意的是1≤n,a,b
- 人工智能和云时代的五大DBA关注点
人工智能dba
数据库管理员(DBA)的角色在不断演变,以适应技术和应用开发方式的变化。过去,DBA主要侧重于管理物理硬件和软件,而现在,他们发现自己正在驾驭由云技术、人工智能驱动的自动化以及不断增长的数据所构成的复杂情况。2025年伊始,让我们来探讨一下让DBA夜不能寐的五大问题。数据安全和隐私数据泄露事件不断成为头条新闻,其后果可能是毁灭性的。DBA站在保护敏感信息的第一线。根据IBM最近的一项研究,数据泄露
- 全面分析 DeepSeek 的新开源 FlashMLA
X.Cristiano
FlashMLA深度学习人工智能
导言著名的人工智能公司DeepSeek最近开源了FlashMLA,这是一款针对HopperGPU上的多头潜意识(MLA)进行了优化的高性能解码内核。这一进展对于大型语言模型(LLM)来说意义重大,因为大型语言模型在推理过程中面临内存和计算方面的挑战,尤其是长序列。本报告深入探讨了FlashMLA的技术细节、性能指标、应用和未来影响,为研究人员、开发人员和人工智能爱好者提供了全面的了解。背景介绍多头
- 评估您的数据是否可用于人工智能的三个考虑因素
人工智能
评估您的数据是否可用于人工智能的三个考虑因素多数组织正在人工智能和生成性人工智能的炒作中迷失方向。在许多情况下,他们并没有准备好人工智能项目所需的数据基础。三分之一的高管认为,只有不到50%的组织有了人工智能所需的数据,而多数组织并未准备好。因此,在开展人工智能项目之前,奠定正确的基础至关重要。在评估准备情况时,主要考虑因素如下:可用性:您的数据在哪里?类目:您将如何记录和协调您的数据?质量:优质
- AI时代的非人类身份安全
人工智能
AI时代的非人类身份安全随着AI在企业中的崛起,攻击面也在不断扩展。了解如何保护非人类身份(Non-HumanIdentities,NHIs)并防止未经授权的访问。非人类身份(NHIs)近期成为焦点并非偶然——随着AI工具和自主代理的快速普及,企业的NHI数量正呈爆炸式增长。这一趋势也引发了关于机器身份与治理的大量研究和讨论。与系统的普通用户类似,NHI(如AI代理、机器人、脚本和云工作负载)通过
- DeepSeek 开源周:DeepEP 项目详解,GPU 压榨计划启动!
东方佑
量子变法开源
引言就在今天,2025年2月25日,DeepSeek再次为人工智能社区带来了一场技术盛宴——DeepEP项目的开源。这个旨在优化GPU性能的工具一经发布便迅速获得了广泛的关注和赞誉,短短两小时内就斩获了超过1000个Star。本文将详细介绍DeepEP的功能、应用场景以及如何使用它来提升AI训练和推理的效率。DeepEP概述功能与作用DeepEP是一个专门针对Mixture-of-Experts(
- DeepSeek API是什么
兔兔爱学习兔兔爱学习
大模型pythonprompt算法
DeepSeekAPI是一个提供人工智能服务的接口,它允许开发者通过简单的API调用来实现各种高级的自然语言处理(NLP)任务,如文本生成、对话系统、文本摘要、问答系统等。DeepSeekAPI通常基于先进的大模型,如Transformer架构的模型,提供了强大的语言理解和生成能力。DeepSeekAPI的特点易于集成:开发者可以通过简单的HTTP请求调用API,无需深入了解底层模型的具体实现。高
- 电子科大考研经验分享
bugmaker.
杂谈机器学习
最近有好多学弟学妹问我考研相关的问题,我大致总结了一下,无非就是考研和就业相关的问题。趁着我还没忘记,写一篇博客跟大家分享一下我的考研经历,给大家做个参考。先说考研选择大于努力选择大于努力,这是我考完研之后最大的感受。举个栗子:今年中科大的软件,400多分的人有400多个,这意味着如果你初试成绩不在400以上,上岸的机会就很渺茫了,反观中山大学的人工智能,320多分就排到了第二名。所以正确评估自己
- DeepSeek为云厂商带来新机遇,东吴证券看好AI带动百度智能云增长
大力财经
人工智能百度
近日,摩根士丹利(亚洲)发布研究报告《DeepSeek-AlBifurcation》,报告指出DeepSeek的爆火催生了低成本人工智能市场,为数据中心、芯片及云服务提供商带来新的发展机遇。同时,东吴证券发布研究报告维持百度“买入”评级,看好AI给集团云业务带来新发展机遇。在百度发布的2024年第四季度及全年财报中显示,百度智能云业务第四季度营收同比增长26%,在国内大模型市场中标项目数、行业覆盖
- 当AI搜索撕开传统搜索的裂缝,警惕AI搜索的“信息茧房”
shelly聊AI
AI核心技术AI行业趋势人工智能
大家好,我是Shelly,一个专注于输出AI工具和科技前沿内容的AI应用教练,体验过300+款以上的AI应用工具。关注科技及大模型领域对社会的影响10年+。关注我一起驾驭AI工具,拥抱AI时代的到来。人工智能&AIGC术语100条Shelly聊AI-重磅发布Shelly聊AI:年度展望:2025年AI与社会发展关键事件的深度思考(每年一篇,十年为期)数字世界正在经历一场无声的地震,谷歌工程师发现,
- 在Intel GPU上使用IPEX-LLM进行本地BGE嵌入
shuoac
python
在现代人工智能应用中,尤其在诸如检索增强生成(RAG)和文档问答等任务中,低延迟是一个至关重要的指标。Intel的IPEX-LLM是一种专门为IntelCPU和GPU优化的PyTorch库,能够在包括本地PC上的集成显卡和独立显卡(如Arc、Flex和Max)在内的Intel硬件上以极低的延迟运行大型语言模型(LLM)。本文将介绍如何在IntelGPU上结合LangChain使用IPEX-LLM进
- 百度文心大模型API保姆级教程:从入门到实战
海棠AI实验室
智元启示录百度API文心大模型
目录文心大模型简介文心大模型vs.OpenAIGPT系列应用构建实例API集成详细步骤准备工作获取AccessToken发起API请求API的调试和常见问题的解决进阶应用安全性和最佳实践总结与未来展望随着大型语言模型(LLMs)在全球范围内的兴起,百度文心大模型(ERNIE)已成为人工智能领域的一颗耀眼新星。对标OpenAI的GPT系列,文心大模型致力于为中文用户提供卓越的自然语言处理能力,广泛赋
- 用 ActionNode 重构技术文档助手:从原理到实践的深度解析
海棠AI实验室
智元启示录重构ActionNodeMetaGPT人工智能AIagent
目录什么是ActionNode?为什么用ActionNode重构技术文档助手?系统架构:从多智能体到ActionNode示例代码实现:技术文档助手中的ActionNode总结在数字化时代,技术文档的重要性日益凸显。一份清晰、准确的文档不仅能帮助用户快速上手,还能提升产品的专业形象。然而,撰写高质量的技术文档往往耗时费力。近年来,随着人工智能技术的飞速发展,自动生成技术文档成为可能。MetaGPT框
- 专访微软CEO:AGI并非真正基准,AI行业也不会“赢家通吃”
AI大模型头条
人工智能那些事儿microsoftagi人工智能游戏aigpt语言模型
【编者按】日前,微软首席执行官SatyaNadella在参加由知名科技播客主持人DwarkeshPatel主持的播客节目DwarkeshPodcast时,谈到了他对当前人工智能(AI)/通用人工智能(AGI)的前景、量子计算的革命性进展,以及科技如何推动全球经济变革的看法。当各家公司都在争先恐后地追逐AGI时,Nadella在访谈中却语出惊人,“我们自己宣称达成某个AGI的里程碑,对我来说,那只是
- 人工智能在fpga的具体应用_FPGA创意人工智能研发 校企合作培养专业人才
墨墨猪
人工智能在fpga的具体应用
FPGA英特尔®FPGA与人工智能技术培训——成都信息工程大学站人工智能在21世纪初迎来以深度学习与大数据云计算为主导的第三次浪潮,在无人驾驶、医疗保健、工业等多个领域得到广泛应用。随着人工智能理论和技术日益成熟,FPGA在人工智能方面的应用也越来越多,特别对于需要分析大量数据的AI、大数据以及机器学习等研究领域。人工智能与FPGA的灵活应用,对人工智能专业人才培养提出了更高要求。英特尔®FPGA
- 【人工智能数学基础篇】线性代数基础学习:深入解读矩阵及其运算
猿享天开
人工智能基础知识学习线性代数人工智能学习矩阵及其运算
矩阵及其运算:人工智能入门数学基础的深入解读引言线性代数是人工智能(AI)和机器学习的数学基础,而矩阵作为其核心概念之一,承担着数据表示、变换和运算的重任。矩阵不仅在数据科学中广泛应用,更是神经网络、图像处理、自然语言处理等领域的重要工具。本文将深入探讨矩阵的基本概念、性质及其运算,通过详细的数学公式、推导过程和代码示例,帮助读者更好地理解矩阵在AI中的应用。第一章:矩阵的基本概念1.1矩阵的定义
- AI 在未来相机领域的应用前景如何?
程序员Android
人工智能数码相机智能电视
和你一起终身学习,这里是程序员Android人工智能(AI)在手机相机领域的应用已成为近年来技术创新的核心驱动力之一。随着计算摄影、深度学习算法和硬件加速技术的进步,AI正在重新定义手机摄影的可能性,并为未来带来更多颠覆性潜力。以下是AI在手机相机中的关键潜力方向及具体应用场景:经典好文推荐,通过阅读本文,您将收获以下知识点:1.计算摄影的深度进化多帧合成与超分辨率:AI通过分析多张连续拍摄的帧(
- 云平台结合DeepSeek的AI模型优化实践:技术突破与应用革新
荣华富贵8
程序员的知识储备1经验分享
云平台与AI模型的深度结合已成为推动人工智能技术落地的重要驱动力。DeepSeek(深度求索)作为前沿AI模型的代表,通过与云计算的深度融合,在技术架构和应用场景层面实现了突破性进展。以下从技术突破和应用革新两个维度进行系统解析:---###**一、技术突破:云原生AI架构的进化**####1.**弹性算力调度体系**-**动态资源分配**:基于Kubernetes的智能调度器实现GPU资源的细粒
- 全市场大模型分类及对比分析报告
早退的程序员
分类数据挖掘人工智能
全市场大模型分类及对比分析报告1.引言随着人工智能技术的飞速发展,大模型(LargeModels)已成为推动AI进步的核心力量。大模型凭借其强大的计算能力和海量数据处理能力,在自然语言处理(NLP)、计算机视觉(CV)、语音识别等领域取得了显著成果。本报告将对全市场中几类主要的大模型进行分类和对比分析,探讨其技术特点、应用场景及未来发展趋势。2.大模型分类根据模型架构、训练目标和应用领域,全市场的
- 具身智能(Embodied Intelligence)
ZhangJiQun&MXP
教学人工智能深度学习算法
目录具身智能(EmbodiedIntelligence)简单理解举例说明具身智能(EmbodiedIntelligence)是人工智能领域的一个子领域,它强调智能系统不仅仅依赖于算法和数据处理,还必须具备一个物理实体(embodiment),通过与环境的直接互动来获取信息、学习、适应并采取行动。以下是对具身智能的简单理解和举例说明:简单理解具身智能的核心在于“具身”二字,即智能系统需要有一个物理形
- DeepSeek:通用人工智能的探路者与技术革新者——从技术架构到应用生态的全方位解析
sanggou
人工智能架构
一、DeepSeek的发展历程:中国AGI先锋的崛起DeepSeek(深度求索)成立于2023年,是中国人工智能领域的一颗新星。尽管成立时间较短,但其发展速度与技术突破令人瞩目:2023年:公司成立,核心团队由来自全球顶尖高校(如MIT、斯坦福)和科技企业(如GoogleBrain、OpenAI)的AI科学家组成,专注于AGI(通用人工智能)技术的研发。2024年初:推出首个公开产品DeepSee
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key