拉格朗日乘子法的简单数学推导

拉格朗日乘子法公式

结论
  • 原问题

  • 转换问题

    其中

推导过程


一、 隐函数
  1. 将自变量 展开成向量形式

    则等式 存在隐函数使得


  2. 隐函数偏导数
    对于等式(方程)有式的隐函数,对其两边同时进行求导得
    \frac{\partial {\mathbf{G_{x'}}}}{\partial x_1} = \frac{\partial {\mathbf{G}} }{\partial x_1}+ \frac{\partial {\mathbf{G}} }{\partial x_0} \frac{\partial {{g}} }{\partial x_1} = 0 \\ \frac{\partial {\mathbf{G_{x'}}}}{\partial x_2} = \frac{\partial {\mathbf{G}} }{\partial x_2}+ \frac{\partial {\mathbf{G}} }{\partial x_0} \frac{\partial {{g}} }{\partial x_2} = 0 \\ \ \\ ... \\ \ \\ \frac{\partial {\mathbf{G_{x'}}}}{\partial x_n} = \frac{\partial {\mathbf{G}} }{\partial x_n}+ \frac{\partial {\mathbf{G}} }{\partial x_0} \frac{\partial {{g}} }{\partial x_n} = 0 \tag{6}
二、原问题的转换

原问题结合等式可以等价为

对式求解,即为
\frac{\partial {\mathbf{F_{x'}}}}{\partial x_1} = \frac{\partial {\mathbf{F}} }{\partial x_1}+ \frac{\partial {\mathbf{F}} }{\partial x_0} \frac{\partial {{g}} }{\partial x_1} = 0 \\ \frac{\partial {\mathbf{F_{x'}}}}{\partial x_2} = \frac{\partial {\mathbf{F}} }{\partial x_2}+ \frac{\partial {\mathbf{F}} }{\partial x_0} \frac{\partial {{g}} }{\partial x_2} = 0 \\ \ \\ ... \\ \ \\ \frac{\partial {\mathbf{F_{x'}}}}{\partial x_n} = \frac{\partial {\mathbf{F}} }{\partial x_n}+ \frac{\partial {\mathbf{F}} }{\partial x_0} \frac{\partial {{g}} }{\partial x_n} = 0 \tag{8}
观察式,等式中含有共同项,式子两侧同除以共同项,可以变换为
\frac{\partial {{g}} }{\partial x_1} = -\frac{\frac{\partial {\mathbf{G}} }{\partial x_1}}{\frac{\partial {\mathbf{G}} }{\partial x_0}} \\ \frac{\partial {{g}} }{\partial x_2} = -\frac{\frac{\partial {\mathbf{G}} }{\partial x_2}}{\frac{\partial {\mathbf{G}} }{\partial x_0}} \\ \ \\ ... \\ \ \\ \frac{\partial {{g}} }{\partial x_n} = -\frac{\frac{\partial {\mathbf{G}} }{\partial x_n}}{\frac{\partial {\mathbf{G}} }{\partial x_0}} \tag{9}
将式依次带入式,得
\frac{\partial {\mathbf{F_{x'}}}}{\partial x_1} = \frac{\partial {\mathbf{F}} }{\partial x_1}+ \frac{\partial {\mathbf{F}} }{\partial x_0} (-\frac{\frac{\partial {\mathbf{G}} }{\partial x_1}}{\frac{\partial {\mathbf{G}} }{\partial x_0}})= \frac{\partial {\mathbf{F}} }{\partial x_1}+ (-\frac{\frac{\partial {\mathbf{F}} }{\partial x_0}}{{\frac{\partial {\mathbf{G}} }{\partial x_0}}})\frac{\partial {\mathbf{G}} }{\partial x_1}= 0 \\ \frac{\partial {\mathbf{F_{x'}}}}{\partial x_2} = \frac{\partial {\mathbf{F}} }{\partial x_2}+ \frac{\partial {\mathbf{F}} }{\partial x_0} (-\frac{\frac{\partial {\mathbf{G}} }{\partial x_2}}{\frac{\partial {\mathbf{G}} }{\partial x_0}})= \frac{\partial {\mathbf{F}} }{\partial x_2}+ (-\frac{\frac{\partial {\mathbf{F}} }{\partial x_0}}{{\frac{\partial {\mathbf{G}} }{\partial x_0}}})\frac{\partial {\mathbf{G}} }{\partial x_2}= 0 \\ \ \\ ... \\ \ \\ \frac{\partial {\mathbf{F_{x'}}}}{\partial x_n} = \frac{\partial {\mathbf{F}} }{\partial x_n}+ \frac{\partial {\mathbf{F}} }{\partial x_0} (-\frac{\frac{\partial {\mathbf{G}} }{\partial x_n}}{\frac{\partial {\mathbf{G}} }{\partial x_0}})= \frac{\partial {\mathbf{F}} }{\partial x_n}+ (-\frac{\frac{\partial {\mathbf{F}} }{\partial x_0}}{{\frac{\partial {\mathbf{G}} }{\partial x_0}}})\frac{\partial {\mathbf{G}} }{\partial x_n}= 0 \tag{10}

代入得
\frac{\partial {\mathbf{F}} }{\partial x_1}+ \lambda\frac{\partial {\mathbf{G}} }{\partial x_1}= 0 \\ \frac{\partial {\mathbf{F}} }{\partial x_2}+ \lambda\frac{\partial {\mathbf{G}} }{\partial x_2}= 0 \\ \ \\ ... \\ \ \\ \frac{\partial {\mathbf{F}} }{\partial x_n}+ \lambda\frac{\partial {\mathbf{G}} }{\partial x_n}= 0 \tag{12}
同时,式可变换为

结合式,即可等价于

意其即为式的最优解

证毕。
©

你可能感兴趣的:(拉格朗日乘子法的简单数学推导)