达摩院细粒度分类SoftTriple Loss ICCV高引论文深入解读

一、背景

度量学习是一种机器学习方法,它主要用于在相似性度量的基础上进行数据挖掘。具体来说,度量学习通过学习一种函数来度量两个数据样本点的相似性。这种函数称为度量函数,它的目的是在尽可能减少度量错误的同时最小化相似数据样本点之间的距离。典型的度量学习方法包括Triplet Loss、ProxyNCA、Npairs等。度量学习可以应用于许多领域,例如:
1.)图像分类:度量学习可以用来帮助计算机识别图像中的物体。例如,通过学习数据集中的图像时,可以计算出两张图像之间的相似度,从而帮助计算机对新图像进行分类。例如,能够将图像分类到“狗”、“猫”或“其他”的类别中。度量学习在图像识别和分类中的应用非常广泛,且取得了很好的效果。
2.)文本分类:在文本领域,度量学习可以用来对文本进行分类,例如将文本分为正面或负面的情感,或者将它们分类到特定的主题中。假设我们有一组文档,每个文档都属于某一个类别,比如技术文章、新闻报道、娱乐新闻或体育新闻。我们可以训练一个模型,该模型能够将一篇新闻报道与一篇技术文章区分开来,并将它们分别分类到新闻报道或技术文章的类别中。

完整内容请点击下方链接查看:

https://developer.aliyun.com/article/1207732?utm_content=g_10...

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

你可能感兴趣的:(达摩院细粒度分类SoftTriple Loss ICCV高引论文深入解读)