- 随机生成优惠码并保存至Mysql数据库
iamwiam
javajdbc连接mysqlJavajdbc连接mysql
目前很多商家通过优惠码做活动,现在我们简单的实现八位的优惠码,并保存在数据库中。1.随机生成优惠码代码如下:importjava.util.Random;/***功能:随机生成优惠码*@authoriamwiam**/publicclassActivatedcode{publicintACTIVATEDCODENUM=200;//生成的优惠码数量Randomrandom=newRandom();S
- 【华为od刷题(C++)】HJ23 删除字符串中出现次数最少的字符
m0_64866459
哈希算法算法c++华为od
我的代码:#include//用于输入输出操作#include//引入哈希表容器unordered_map,用来存储每个字符出现的次数usingnamespacestd;intmain(){stringstr;//声明一个字符串变量str,用于接收输入的字符串intmin=27;//声明一个整型变量min,初始值设为27unordered_mapmp;//声明一个unordered_map//它的
- 雷达mid360 和 Fast Lio
AugustInSopton
人工智能
1.实时激光里程计+建图(SLAM)FAST‑LIO(及FAST‑LIO2)通过融合LiDAR点云与IMU数据,提供高频(可达~100 Hz)的位姿估计(实时里程计)与增量建图功能https://github.com/SylarAnh/fast_lio_mid360https://github.com/SylarAnh/fast_lio_mid360支持Mid‑360这种全向固态LiDAR,默认r
- Android车机DIY开发之硬件篇(二)——NXP i.mx8介绍
勿忘初心91
车机DIYeclipseandroid嵌入式硬件学习
Android车机DIY开发之硬件篇(二)——NXPi.mx8介绍NXP介绍页1.i.mx81xHDMI*2.0TXwithHDCP*2.2,1xeDP*1.2,1xDP*1.41xHDMI1.4RXwithHDCP2.2CoreComplex#1:4xCortex-A53CoreComplex#2:2xCortex-A722xCortex-M4F1xHIFI4DSPAutomotiveAEC-Q
- DRM 显示控制与硬件参数配置链路总结(以 i.MX8MP 为例)
DRM显示控制与硬件参数配置链路总结(以i.MX8MP为例)支持作者新书,深入学习嵌入式开发知识:京东购买链接一、核心理解显示参数(如分辨率、时序、色深)最终来源于用户空间,由DRM驱动完成传递与配置,并由LCD控制器驱动实际硬件输出。设备树中通常不写死这些参数。二、显示硬件参数:定义与归属参数项通常设置位置说明分辨率用户空间(如Weston)通过DRMAPI设置,例如1920x1080@60Hz
- 牛客_计算器(二)
d3y1
java开发语言
计算器(二)https://www.nowcoder.com/practice/a9c170bfaf7349e3acb475d786ab1c7dimportjava.util.*;/***NC241计算器(二)*@authord3y1*/publicclassSolution{/***代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可***@paramsstring字符串*@
- 大语言模型(LLM)课程学习(Curriculum Learning)、数据课程(data curriculum)指南:从原理到实践
在人工智能的浪潮之巅,我们总会惊叹于GPT-4、Llama3.1、Qwen2.5这些顶尖大语言模型(LLM)所展现出的惊人能力。它们似乎无所不知,能写诗、能编程、能进行复杂的逻辑推理。一个自然而然的问题是:它们是如何“学”会这一切的?大多数人会回答:“用海量数据喂出来的。”这个答案只说对了一半。如果你认为只要把互联网上能找到的所有数据(比如15万亿个token)随机打乱,然后“一锅烩”地喂给模型,
- qiankun 微前端框架子应用间通信方法详解
啃火龙果的兔子
开发DEMO前端框架
qiankun作为流行的微前端解决方案,提供了多种子应用间通信的方式。以下是全面的通信方法总结:1.基于props的通信(主应用与子应用)主应用向子应用传递数据://主应用注册子应用时传递数据registerMicroApps([{name:'subApp',entry:'//localhost:7100',container:'#subapp-container',activeRule:'/su
- Hough变换
先上代码,c++1.hough检测线//LineFinder.h#include"opencv2/imgproc/imgproc.hpp"#include"opencv2/highgui/highgui.hpp"#include"opencv2/core/core.hpp"#include//#include//#includeusingnamespacestd;usingnamespacecv;
- 关于 栈帧变化完整流程图(函数嵌套)
shenyan~
流程图
一、什么是栈帧(StackFrame)当一个函数被调用时,会在栈上开辟一段空间,叫做栈帧。每个栈帧保存了:函数的参数返回地址(从哪里跳回来)上一个栈帧的栈底指针(保存调用者的EBP/FP)局部变量保存的一些寄存器(可选)二、函数嵌套调用例子以C为例:voidC(){intc=3;}voidB(){intb=2;C();}voidA(){inta=1;B();}intmain(){A();retur
- 【DeepSeek开源周】Day 4:DualPipe & EPLB 学习笔记
蓝海星梦
DeepSeek开源周探秘开源学习笔记人工智能云计算分布式
目录一、DualPipe&EPLB概述二、DualPipe详解1.流水线并行策略(1)F-then-B策略(2)1F1B策略2.朴素流水线并行3.GPipe微批次流水线并行4.PipeStream5.ZBPP6.DualPipe7.DualPipeV8.流水线并行方案对比三、EPLB详解1.专家并行(EP)2.EPLB冗余专家策略3.负载均衡策略(1)分层负载均衡(2)全局负载均衡(3)接口和示例
- 如何最大化YashanDB数据库的存储性能
数据库
在数据库技术领域,存储性能不仅对数据的读写速度有直接影响,同时也关系到整个系统的效率和穷尽的业务能力。数据库管理员和系统架构师常面临着性能瓶颈、I/O瓶颈等问题,并需要通过优化存储结构、合理设计索引、选择合适的部署架构等手段来提升存储性能。本文将详细解析YashanDB数据库的存储性能优化,包括存储管理、数据结构选择、并行处理等多方面的技术原理和实践要点。存储架构优化部署架构选择YashanDB支
- 量子计算+AI芯片:光子计算如何重构神经网络硬件生态
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站量子计算+AI芯片:光子计算如何重构神经网络硬件生态——2025年超异构计算架构下的万亿参数模型训练革命产业拐点:英伟达BlackwellUltra发布光互连版GPU,IBM量子处理器突破512比特,光子计算商用成本降至$5/TOPS实测突破:Llama3-405B在光子-量子混合集群训练能耗下
- OpenCV 人脸分析------面部关键点检测类cv::face::FacemarkLBF
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述使用LocalBinaryFeatures(LBF)算法进行面部关键点检测(faciallandmarkdetection)。该算法通过级联回归树预测人脸的68个关键点,具有较高的精度和速度。公共成员函数staticPtrcreate(constParams&pa
- Aurora中插入伪代码的字体设置
中文:宋体英文:TimesNewRoman公式:LatinModernMath,跟包newtxmath有关word里面插入对象-->选择AuroraEquation-->Properties-->Packages,复制以下代码:%!TEXprogram=xelatex%强制使用XeLaTeX引擎\documentclass[a4paper]{article}%\usepackage{mathptm
- 补充:解决Ubuntu20.04.4安装KRS时无法下载github代码问题
mamak426
kv260github自动驾驶人工智能
官方代码下载自github(gitlab),如何访问外网的问题这里可以合法合规解决,就是先把github的代码导入gitee,再采取同步的方式解决:原代码段如下:仔细看代码内容,链接路径全为github。catkrs_rolling.reposrepositories:ros2/ament_lint:type:giturl:https://github.com/ament/ament_lintve
- Javascript基础内容回顾—变量提升、事件循环和闭包等内容
GISer_Jinger
javascript前端
以下是前端面试中JavaScript基础易错问题的详解,结合常见考点和易混淆概念进行解析:⚠️一、变量作用域与提升varvslet/const◦变量提升:var声明的变量会提升到作用域顶部(值为undefined),而let/const存在暂时性死区(声明前访问报错)。◦循环陷阱:for(vari=0;iconsole.log(i));//输出3,3,3(共享同一作用域)}for(leti=0;i
- fac-via-ppg 项目使用教程
fac-via-ppg项目使用教程fac-via-ppgForeignAccentConversionbySynthesizingSpeechfromPhoneticPosteriorgrams(Interspeech'19)项目地址:https://gitcode.com/gh_mirrors/fa/fac-via-ppg1.项目目录结构及介绍fac-via-ppg/├──data/│└──fi
- 【论文阅读】Dynamic Few-Shot Visual Learning without Forgetting
Bosenya12
论文阅读
系统概述如下:(a)一个基于卷积神经网络(ConvNet)的识别模型,该模型包含特征提取器和分类器;(b)一个少样本分类权重生成器。这两个组件都是在一组基础类别上训练的,我们为这些类别准备了大量训练数据。在测试阶段,权重生成器会接收少量新类别的训练数据以及基础类别的分类权重向量(分类器框内的绿色矩形),并为新类别生成相应的分类权重向量(分类器框内的蓝色矩形)。这样,卷积神经网络就能同时识别基础类别
- 鸿蒙(HarmonyOS)性能优化实战-启动分析工具Launch Profiler 学习指南
愿天堂没有996
HarmonyOS鸿蒙开发移动开发harmonyos性能优化HarmonyOSOpenHarmony移动开发
LaunchProfiler概述DevEcoStudio内置Profiler分析调优工具。其中Launch主要用于分析应用或服务的启动耗时,分析启动周期各阶段的耗时情况、核心线程的运行情况等,协助开发者识别启动缓慢的原因。此外,Launch任务窗口还集成了Time、CPU、Frame场景分析任务的功能,方便开发者在分析启动耗时的过程中同步对比同一时段的其他资源占用情况。场景示例如下代码在页面绘制之
- SQL 多个字段的值拼接成Josn
小二不二~
mysql
实际开发中,我们需要把一张表的多个字段值复制到一张新表里的一个字段来存储,少量数据我们可以通过sql语句来处理语法结构如下:SELECTColumnName1,CONCAT('{anytName:"',yourColumnName,'",anyName:"',yourColunName,'"}')asextFROMTableNameGROUPBYColumnName1;注意多个字段间不要换行,仔细
- sqlserver 将多个字段合并成一个字段
chtholl
sqlserver学习sql数据库java
1.字段为竖向显示的时候在这里我们合并sqr,将id为(47,50,51)合并SELECTname=((stuff((SELECT','+CAST(a.sqrASVARCHAR)FROMformtable_main_11aWHEREa.idin(47,50,51)ORDERBYa.idFORxmlpath('')),1,1,'')))显示结果:2.字段为横向显示的时候合并在这里我们合并(reque
- sql更新某个字段的值为两个字段拼接
//name=name+id;字段后拼接:结果为nameidupdatet_tablesetname=concat(name,id);//name=id+name;字段前拼接:结果为idnameupdatet_tablesetname=concat(id,name);
- Yuzu模拟器Vulkan模式配置指南与性能优化实战
mmoo_python
性能优化windows
Yuzu模拟器Vulkan模式配置指南与性能优化实战前言:VulkanAPI为何成为模拟器性能突破口作为当前最热门的Switch模拟器,Yuzu团队近期向全体用户开放了VulkanAPI支持功能。这项技术革新不仅解决了长期困扰AMD显卡用户的兼容性问题,更通过底层渲染架构的革新,为复杂3D游戏带来显著性能提升。本文将深度解析Vulkan模式的配置流程,结合实际测试数据揭示性能优化秘诀,助力玩家畅玩
- 算法 堆与堆排序
堆的定义与分类堆是一种特殊的完全二叉树,通常分为两种类型:大顶堆(大根堆):每个节点的值都大于或等于其子节点的值。小顶堆(小根堆):每个节点的值都小于或等于其子节点的值。堆的性质结构性:堆是一棵完全二叉树,即除了最后一层外,其他层的节点都是满的,且最后一层的节点从左到右填充。有序性:堆中每个节点的值都满足特定的顺序关系(大于或小于子节点)。堆的存储数组索引0通常作为堆的根节点。对于索引为i的节点,
- SQL某个字段的所有值都拼接一个值
某个字段的所有值都拼接一个值updatetableName(表名)set"字段"=RTRIM(字段)||'(增加的值)'WHEREtype='0'比如(user表):idnamegender1张三男2玛丽亚女3康康男………修改gender为男人/女人SQL语句updateuserset"gender"=RTRIM(gender)||'人'结果(user表)idnamegender1张三男人2玛丽亚
- sql USING 简化 JOIN 操作
best_virtuoso
sqlsql数据库
在SQL中,USING是一种用于简化JOIN操作的语法糖,它允许你明确指定连接表时所依据的列名。与传统的ON子句相比,USING提供了更简洁的语法1.基本语法与作用table1JOINtable2USING(column_name);将table1和table2中column_name值相同的行连接在一起例:假设有两个表:Orders(包含order_id,cust_id)和OrderItems(
- LangChain核心组件全解析
北辰alk
AIlangchain
文章目录一、核心架构组件1.模型I/O(ModelI/O)2.检索(Retrieval)3.记忆(Memory)4.链(Chains)5.代理(Agents)二、关键支持组件1.回调系统(Callbacks)2.文档加载器(DocumentLoaders)3.文本分割器(TextSplitters)4.向量存储(VectorStores)三、高级架构组件1.工具集成(Tools)2.工作流(Wor
- 深度学习微调中的优化器全景解析:从理论到实践
北辰alk
AI深度学习人工智能
文章目录一、基础优化器:深度学习微调的基石1.1随机梯度下降(SGD)1.2AdaGrad(自适应梯度算法)二、自适应优化器:现代深度学习的标配2.1RMSProp2.2Adam(自适应矩估计)三、大模型微调专用优化器3.1LAMB(Layer-wiseAdaptiveMoments)3.2Sophia(二阶优化启发)四、优化器性能对比研究4.1在GLUE基准上的表现(BERT-base微调)4.
- 【AI论文】GLM-4.1V-思考:借助可扩展强化学习实现通用多模态推理
东临碣石82
人工智能
摘要:我们推出GLM-4.1V-Thinking这一视觉语言模型(VLM),该模型旨在推动通用多模态推理的发展。在本报告中,我们分享了在以推理为核心的训练框架开发过程中的关键发现。我们首先通过大规模预训练开发了一个具备显著潜力的高性能视觉基础模型,可以说该模型为最终性能设定了上限。随后,借助课程采样强化学习(ReinforcementLearningwithCurriculumSampling,R
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,