对于速度场 v ⃗ = v ⃗ ( x ⃗ , t ) = v i g ⃗ i \vec{v}=\vec{v}(\vec{x},t)=v^i\vec{g}_i v=v(x,t)=vigi,其右梯度 (称作速度梯度) 可写作
v ⃗ ▽ = ∂ v ⃗ ∂ x j ⊗ g ⃗ j = v i ∣ j g ⃗ i ⊗ g ⃗ j ≜ L = ∂ v ⃗ ∂ X A ∂ X A ∂ x j ⊗ g ⃗ j = ∂ v ⃗ ∂ X A ⊗ C ⃗ A = v B ∣ ∣ A C ⃗ B ⊗ C ⃗ A = C ⃗ ∙ A ⊗ C ⃗ A = ( C ⃗ ∙ B ⊗ G ⃗ B ) ⋅ ( G ⃗ A ⊗ C ⃗ A ) = F ∙ ⋅ F − 1 \begin{aligned} & \vec{v}\triangledown =\dfrac{\partial \vec{v}}{\partial x^j}\otimes\vec{g}\ ^j =v^i|_j\vec{g}_i\otimes\vec{g}^j\triangleq\bold L\\\\ &\ \ \ \ \ =\dfrac{\partial \vec{v}}{\partial X^A}\dfrac{\partial X^A}{\partial x^j}\otimes\vec{g}\ ^j =\dfrac{\partial \vec{v}}{\partial X^A}\otimes\vec{C}^A =v^B||_A\vec{C}_B\otimes\vec{C}^A =\overset{\bullet}{\vec{C}}_A\otimes\vec{C}^A \\\\ &\ \ \ \ \ =(\overset{\bullet}{\vec{C}}_B\otimes\vec{G}^B)\cdot(\vec{G}_A\otimes\vec{C}^A) =\overset{\bullet}{\bold F}\cdot\overset{-1}{\bold F} \end{aligned} v▽=∂xj∂v⊗g j=vi∣jgi⊗gj≜L =∂XA∂v∂xj∂XA⊗g j=∂XA∂v⊗CA=vB∣∣ACB⊗CA=C∙A⊗CA =(C∙B⊗GB)⋅(GA⊗CA)=F∙⋅F−1
将速度梯度的对称部分称作变形率张量:
D = 1 2 ( L + L T ) = 1 2 ( v ⃗ ▽ + ▽ v ⃗ ) \bold D=\dfrac{1}{2}(\bold L+\bold L^T)=\dfrac{1}{2}(\vec{v}\triangledown+\triangledown\vec{v}) D=21(L+LT)=21(v▽+▽v)
将速度梯度的反对称部分称作物质旋率张量:
W = 1 2 ( L − L T ) = 1 2 ( v ⃗ ▽ − ▽ v ⃗ ) \bold W=\dfrac{1}{2}(\bold L-\bold L^T)=\dfrac{1}{2}(\vec{v}\triangledown-\triangledown\vec{v}) W=21(L−LT)=21(v▽−▽v)
其轴向量为:
ω ⃗ = 1 2 ( ▽ × v ⃗ ) \vec{\omega}=\dfrac{1}{2}(\triangledown\times\vec{v}) ω=21(▽×v)
此外还可以表示为:
ω ⃗ = − 1 4 ϵ : ( C ⃗ ∙ A ⊗ C ⃗ A − C ⃗ A ⊗ C ⃗ ∙ A ) = 1 2 C ⃗ A × C ⃗ ∙ A \vec{\omega}=-\dfrac{1}{4}\epsilon:(\overset{\bullet}{\vec{C}}_A\otimes\vec{C}^A -\vec{C}^A\otimes\overset{\bullet}{\vec{C}}_A ) =\dfrac{1}{2}\vec{C}^A\times\overset{\bullet}{\vec{C}}_A ω=−41ϵ:(C∙A⊗CA−CA⊗C∙A)=21CA×C∙A
定义 处处满足 w ⃗ = 0 \vec{w}=0 w=0 或 W = 0 \bold W=0 W=0 的运动称为无旋运动。
加速度为:
a ⃗ = v ⃗ ∙ = v ⃗ ′ + ( v ⃗ ▽ ) ⋅ v ⃗ = v ⃗ ′ + L ⋅ v ⃗ = v ⃗ ′ + ( D + W ) ⋅ v ⃗ = v ⃗ ′ + D ⋅ v ⃗ + ω ⃗ × v ⃗ = v ⃗ ′ + 1 2 ▽ ( v ⃗ ⋅ v ⃗ ) + 2 W ⋅ v ⃗ \begin{aligned} &\vec{a} =\overset{\bullet}{\vec{v}} =\vec{v}'+(\vec{v}\triangledown)\cdot\vec{v} \\\\ &\ \ =\vec{v}'+\bold{L}\cdot\vec{v}=\vec{v}'+\bold{(D+W)}\cdot\vec{v}\\\\ &\ \ =\vec{v}'+\bold{D}\cdot\vec{v}+\vec{\omega}\times\vec{v} \\\\ &\ \ =\vec{v}'+\dfrac{1}{2}\triangledown(\vec{v}\cdot\vec{v})+2\bold{W}\cdot\vec{v} \end{aligned} a=v∙=v′+(v▽)⋅v =v′+L⋅v=v′+(D+W)⋅v =v′+D⋅v+ω×v =v′+21▽(v⋅v)+2W⋅v
其中,最后一式是由于
W ⋅ v ⃗ = w ⃗ × v ⃗ = 1 2 ( ▽ × v ⃗ ) × v ⃗ = 1 2 ( v ⃗ ▽ − ▽ v ⃗ ) ⋅ v ⃗ = 1 2 ( L ⋅ v ⃗ − ▽ v ⃗ ⋅ v ⃗ ) = 1 2 [ L ⋅ v ⃗ − 1 2 ▽ ( v ⃗ ⋅ v ⃗ ) ] \bold{W}\cdot\vec{v} =\vec{w}\times\vec{v} =\dfrac{1}{2}(\triangledown\times\vec{v})\times\vec{v} =\dfrac{1}{2}(\vec{v}\triangledown-\triangledown\vec{v})\cdot\vec{v} =\dfrac{1}{2}(\bold L\cdot\vec{v}-\triangledown\vec{v}\cdot\vec{v}) =\dfrac{1}{2}[\bold L\cdot\vec{v}-\dfrac{1}{2}\triangledown(\vec{v}\cdot\vec{v})] W⋅v=w×v=21(▽×v)×v=21(v▽−▽v)⋅v=21(L⋅v−▽v⋅v)=21[L⋅v−21▽(v⋅v)]
加速度的 (右) 梯度 定义为:
a ⃗ ▽ = ∂ a ⃗ ∂ x i ⊗ g ⃗ i = ∂ a ⃗ ∂ X A ⊗ C ⃗ A = a B ∣ ∣ A C ⃗ B ⊗ C ⃗ A = C ⃗ ∙ ∙ A ⊗ C ⃗ A = ( C ⃗ ∙ ∙ A ⊗ G ⃗ A ) ⋅ ( G ⃗ B ⊗ C ⃗ B ) = F ∙ ∙ ⋅ F − 1 \begin{aligned} & \vec{a}\triangledown =\dfrac{\partial \vec{a}}{\partial x^i}\otimes\vec{g}^i =\dfrac{\partial \vec{a}}{\partial X^A}\otimes\vec{C}^A =a^B||_A\vec{C}_B\otimes\vec{C}^A\\\\ &\quad\ =\overset{\bullet\bullet}{\vec{C}}_A\otimes\vec{C}^A =(\overset{\bullet\bullet}{\vec{C}}_A\otimes\vec{G}^A)\cdot(\vec{G}_B\otimes\vec{C}^B) =\overset{\bullet\bullet}{\bold F}\cdot\overset{-1}{\bold F} \end{aligned} a▽=∂xi∂a⊗gi=∂XA∂a⊗CA=aB∣∣ACB⊗CA =C∙∙A⊗CA=(C∙∙A⊗GA)⋅(GB⊗CB)=F∙∙⋅F−1
继续讨论前,给出如下命题:
对于任意仿射量 Ψ \Psi Ψ,有:
( Ψ ∙ ) T = ( Ψ T ) ∙ \left(\overset{\bullet}{\Psi}\right)^T=\overset{\bullet}{\left(\Psi^T\right)} (Ψ∙)T=(ΨT)∙
证明:对任意向量 a ⃗ , b ⃗ \vec{a},\vec{b} a,b 满足:
a ⃗ ⋅ Ψ ⋅ b ⃗ = b ⃗ ⋅ Ψ T ⋅ a ⃗ \vec{a}\cdot\bold{\Psi}\cdot\vec{b}=\vec{b}\cdot\bold{\Psi}^T\cdot\vec{a} a⋅Ψ⋅b=b⋅ΨT⋅a
那么,
a ⃗ ∙ ⋅ Ψ ⋅ b ⃗ + a ⃗ ⋅ Ψ ∙ ⋅ b ⃗ + a ⃗ ⋅ Ψ ⋅ b ⃗ ∙ = b ⃗ ∙ ⋅ ( Ψ T ) ⋅ a ⃗ + b ⃗ ⋅ ( Ψ T ) ∙ ⋅ a ⃗ + b ⃗ ⋅ ( Ψ T ) ⋅ a ⃗ ∙ \overset{\bullet}{\vec{a}}\cdot\bold{\Psi}\cdot\vec{b} +\vec{a}\cdot\overset{\bullet}{\bold{\Psi}}\cdot\vec{b} +\vec{a}\cdot\bold{\Psi}\cdot\overset{\bullet}{\vec{b}} =\overset{\bullet}{\vec{b}}\cdot(\bold{\Psi}^T)\cdot\vec{a} +\vec{b}\cdot\overset{\bullet}{(\bold{\Psi}^T)}\cdot\vec{a} +\vec{b}\cdot(\bold{\Psi}^T)\cdot\overset{\bullet}{\vec{a}} a∙⋅Ψ⋅b+a⋅Ψ∙⋅b+a⋅Ψ⋅b∙=b∙⋅(ΨT)⋅a+b⋅(ΨT)∙⋅a+b⋅(ΨT)⋅a∙
则
a ⃗ ⋅ Ψ ∙ ⋅ b ⃗ = b ⃗ ⋅ ( Ψ T ) ∙ ⋅ a ⃗ ⟹ b ⃗ ⋅ [ ( Ψ ∙ ) T − ( Ψ T ) ∙ ] ⋅ a ⃗ = 0 \vec{a}\cdot\overset{\bullet}{\bold{\Psi}}\cdot\vec{b} =\vec{b}\cdot\overset{\bullet}{(\bold{\Psi}^T)}\cdot\vec{a} \Longrightarrow \vec{b}\cdot\left[\left(\overset{\bullet}{\Psi}\right)^T-\overset{\bullet}{(\bold{\Psi}^T)}\right]\cdot\vec{a} =0 a⋅Ψ∙⋅b=b⋅(ΨT)∙⋅a⟹b⋅[(Ψ∙)T−(ΨT)∙]⋅a=0
由 a ⃗ , b ⃗ \vec{a},\vec{b} a,b 的任意性可知命题成立。故此二者可以不加区分运算的先后次序。另外还表明:对称仿射量的物质导数是对称仿射量,反对称仿射量的物质导数为反对称仿射量。
加速度梯度的反对称部分记为:
J = 1 2 ( a ⃗ ▽ − ▽ a ⃗ ) \bold J=\dfrac{1}{2}(\vec{a}\triangledown-\triangledown\vec{a}) J=21(a▽−▽a)
由于恒等式:
2 F T ⋅ W ⋅ F = F T ⋅ ( F ∙ ⋅ F − 1 − F − T ⋅ F ∙ T ) ⋅ F = F T ⋅ F ∙ − F ∙ T ⋅ F 2\bold F^T\cdot\bold W\cdot\bold F =\bold F^T\cdot(\overset{\bullet}{\bold F}\cdot\bold F^{-1}-\bold F^{-T}\cdot\overset{\bullet}{\bold F}\ ^T)\cdot\bold F =\bold F^T\cdot\overset{\bullet}{\bold F}-\overset{\bullet}{\bold F}\ ^T\cdot \bold F 2FT⋅W⋅F=FT⋅(F∙⋅F−1−F−T⋅F∙ T)⋅F=FT⋅F∙−F∙ T⋅F
对左侧求物质导数有:
2 [ F ∙ T ⋅ W ⋅ F + F T ⋅ W ∙ ⋅ F + F T ⋅ W ⋅ F ∙ ] = 2 F T ⋅ ( L T ⋅ W + W ∙ + W ⋅ L ) ⋅ F = 2 F T ⋅ ( D ⋅ W + W ∙ + W ⋅ D ) ⋅ F + 2 F T ⋅ ( L T − L 2 ⋅ W + W ⋅ L − L T 2 ) ⋅ F = 2 F T ⋅ ( D ⋅ W + W ∙ + W ⋅ D ) ⋅ F + 2 F T ⋅ ( − W 2 + W 2 ) ⋅ F = 2 F T ⋅ ( D ⋅ W + W ∙ + W ⋅ D ) ⋅ F \begin{aligned} & \quad 2[\overset{\bullet}{\bold F}\ ^T\cdot\bold W\cdot\bold F+\bold F^T\cdot\overset{\bullet}{\bold W}\cdot\bold F+\bold F^T\cdot\bold W\cdot\overset{\bullet}{\bold F}] \\\\ &=2{\bold F}^T\cdot(\bold L^T\cdot\bold W+\overset{\bullet}{\bold W}+\bold W\cdot\bold L)\cdot\bold F\\\\ &=2{\bold F}^T\cdot(\bold D\cdot\bold W+\overset{\bullet}{\bold W}+\bold W\cdot\bold D)\cdot\bold F+2{\bold F}^T\cdot(\dfrac{\bold L^T-\bold L}{2}\cdot\bold W+\bold W\cdot\dfrac{\bold L-\bold L^T}{2})\cdot\bold F\\\\ &=2{\bold F}^T\cdot(\bold D\cdot\bold W+\overset{\bullet}{\bold W}+\bold W\cdot\bold D)\cdot\bold F+2{\bold F}^T\cdot(-\bold W^2+\bold W^2)\cdot\bold F\\\\ &=2{\bold F}^T\cdot(\bold D\cdot\bold W+\overset{\bullet}{\bold W}+\bold W\cdot\bold D)\cdot\bold F \end{aligned} 2[F∙ T⋅W⋅F+FT⋅W∙⋅F+FT⋅W⋅F∙]=2FT⋅(LT⋅W+W∙+W⋅L)⋅F=2FT⋅(D⋅W+W∙+W⋅D)⋅F+2FT⋅(2LT−L⋅W+W⋅2L−LT)⋅F=2FT⋅(D⋅W+W∙+W⋅D)⋅F+2FT⋅(−W2+W2)⋅F=2FT⋅(D⋅W+W∙+W⋅D)⋅F
对右侧求物质导数:
F ∙ T ⋅ F ∙ + F T ⋅ F ∙ ∙ − F ∙ ∙ T ⋅ F − F ∙ T ⋅ F ∙ = F T ⋅ F ∙ ∙ − F ∙ ∙ T ⋅ F = F T ⋅ ( F ∙ ∙ ⋅ F − 1 − F − T ⋅ F ∙ ∙ T ) ⋅ F = F T ⋅ ( a ⃗ ▽ − ▽ a ⃗ ) ⋅ F = 2 F T ⋅ J ⋅ F \begin{aligned} & \quad \overset{\bullet}{\bold F}\ ^T\cdot\overset{\bullet}{\bold F}+\bold F^T\cdot\overset{\bullet\bullet}{\bold F}-\overset{\bullet\bullet}{\bold F}\ ^T\cdot \bold F-\overset{\bullet}{\bold F}\ ^T\cdot \overset{\bullet}{\bold F} \\\\ &=\bold F^T\cdot\overset{\bullet\bullet}{\bold F}-\overset{\bullet\bullet}{\bold F}\ ^T\cdot \bold F \\\\ &=\bold F^T\cdot(\overset{\bullet\bullet}{\bold F}\cdot\bold F^{-1}-\bold F^{-T}\cdot\overset{\bullet\bullet}{\bold F}\ ^T)\cdot \bold F\\\\ &=\bold F^T\cdot(\vec{a}\triangledown-\triangledown\vec{a})\cdot \bold F \\\\ &=2\bold F^T\cdot\bold J\cdot \bold F \end{aligned} F∙ T⋅F∙+FT⋅F∙∙−F∙∙ T⋅F−F∙ T⋅F∙=FT⋅F∙∙−F∙∙ T⋅F=FT⋅(F∙∙⋅F−1−F−T⋅F∙∙ T)⋅F=FT⋅(a▽−▽a)⋅F=2FT⋅J⋅F
比较两式得:
J = W ∙ + D ⋅ W + W ⋅ D \bold J=\overset{\bullet}{\bold W}+\bold D\cdot\bold W+\bold W\cdot\bold D J=W∙+D⋅W+W⋅D
[Lagrange-Cauchy 定理] \quad 对于加速度为势的梯度的运动,若某一时刻运动是无旋的,则运动始终是无旋的。
证明:由于加速度为势的梯度,则
a ⃗ = ▽ α ( x ⃗ , t ) \vec{a}=\triangledown\alpha(\vec{x},t) a=▽α(x,t)
那么
( ▽ α ) ▽ = ∂ ∂ x j ( ∂ α ∂ x i ) g ⃗ i ⊗ g ⃗ j ▽ ( ▽ α ) = ∂ ∂ x j ( ∂ α ∂ x i ) g ⃗ j ⊗ g ⃗ i = ∂ ∂ x i ( ∂ α ∂ x j ) g ⃗ i ⊗ g ⃗ j ( ▽ α ) ▽ = ▽ ( ▽ α ) \begin{aligned} &(\triangledown\alpha)\triangledown =\dfrac{\partial }{\partial x^j}\left(\dfrac{\partial\alpha}{\partial x^i}\right)\vec{g}^i\otimes\vec{g}^j \\\\ &\triangledown(\triangledown\alpha) =\dfrac{\partial }{\partial x^j}\left(\dfrac{\partial\alpha}{\partial x^i}\right)\vec{g}^j\otimes\vec{g}^i =\dfrac{\partial }{\partial x^i}\left(\dfrac{\partial\alpha}{\partial x^j}\right)\vec{g}^i\otimes\vec{g}^j \\\\ & (\triangledown\alpha)\triangledown=\triangledown(\triangledown\alpha) \end{aligned} (▽α)▽=∂xj∂(∂xi∂α)gi⊗gj▽(▽α)=∂xj∂(∂xi∂α)gj⊗gi=∂xi∂(∂xj∂α)gi⊗gj(▽α)▽=▽(▽α)
则,加速度梯度的反对称部分为
J = ( ▽ α ) ▽ − ▽ ( ▽ α ) 2 = 0 \bold J =\dfrac{(\triangledown\alpha)\triangledown-\triangledown(\triangledown\alpha)}{2} =0 J=2(▽α)▽−▽(▽α)=0
那么
D D t ( F T ⋅ W ⋅ F ) = F T ⋅ ( D ⋅ W + W ∙ + W ⋅ D ) ⋅ F = F T ⋅ J ⋅ F = 0 \dfrac{D}{Dt}(\bold F^T\cdot\bold W\cdot\bold F) ={\bold F}^T\cdot(\bold D\cdot\bold W+\overset{\bullet}{\bold W}+\bold W\cdot\bold D)\cdot\bold F ={\bold F}^T\cdot\bold J\cdot\bold F=0 DtD(FT⋅W⋅F)=FT⋅(D⋅W+W∙+W⋅D)⋅F=FT⋅J⋅F=0
若运动某一时刻无旋,即某一时刻 W = 0 \bold W=0 W=0,则运动过程中始终有:
F T ⋅ W ⋅ F = 0 \bold F^T\cdot\bold W\cdot\bold F=0 FT⋅W⋅F=0
由于 F \bold F F 正则,故在运动过程中始终有:
W = 0 \bold W=0 W=0
即,运动始终无旋。
命题 \quad 若速度场为势的梯度,则加速度场也为势的梯度。
证明:由于速度有势,则
v ⃗ = ▽ φ ( x ⃗ , t ) \vec{v}=\triangledown\varphi(\vec{x},t) v=▽φ(x,t)
那么
a ⃗ = v ⃗ ∙ = ▽ φ ∙ = ( ▽ φ ) ′ + ( v ⃗ ▽ ) ⋅ v ⃗ \vec{a} =\overset{\bullet}{\vec{v}} =\overset{\bullet}{\triangledown\varphi} =(\triangledown\varphi)'+(\vec{v}\triangledown)\cdot\vec{v} a=v∙=▽φ∙=(▽φ)′+(v▽)⋅v
由于
( ▽ × v ⃗ ) × v ⃗ = ( v ⃗ ▽ − ▽ v ⃗ ) ⋅ v ⃗ = v ⃗ ▽ ⋅ v ⃗ − ▽ v ⃗ ⋅ v ⃗ ▽ v ⃗ ⋅ v ⃗ = ▽ ( v ⃗ ⋅ v ⃗ 2 ) ▽ × v ⃗ = ▽ × ( ▽ φ ) = ∂ 2 φ ∂ x i ∂ x j ϵ i j k g ⃗ k = 0 (\triangledown\times\vec{v})\times\vec{v} =(\vec{v}\triangledown-\triangledown\vec{v})\cdot\vec{v} =\vec{v}\triangledown\cdot\vec{v}-\triangledown\vec{v}\cdot\vec{v}\\\ \\ \triangledown\vec{v}\cdot\vec{v} =\triangledown\left(\dfrac{\vec{v}\cdot\vec{v}}{2}\right) \\\ \\ \triangledown\times\vec{v} =\triangledown\times(\triangledown\varphi) =\dfrac{\partial^2\varphi}{\partial x^i\partial x^j}\epsilon^{ijk}\vec{g}_k=0 (▽×v)×v=(v▽−▽v)⋅v=v▽⋅v−▽v⋅v ▽v⋅v=▽(2v⋅v) ▽×v=▽×(▽φ)=∂xi∂xj∂2φϵijkgk=0
故
a ⃗ = ▽ ( φ ′ + v ⃗ ⋅ v ⃗ 2 ) \vec{a}=\triangledown\left(\varphi'+\dfrac{\vec{v}\cdot\vec{v}}{2}\right) a=▽(φ′+2v⋅v)
证毕。
由于任意线元 d x ⃗ d\vec{x} dx 的物质导数为:
D D t ( d x ⃗ ) = D D t ( F ⋅ d X ⃗ ) = F ∙ ⋅ X ⃗ = ( F ∙ ⋅ F − 1 ) ⋅ ( F ⋅ d X ⃗ ) = L ⋅ d x ⃗ \dfrac{D}{Dt}(d\vec{x}) =\dfrac{D}{Dt}(\bold F\cdot d\vec{X}) =\overset{\bullet}{\bold F}\cdot\vec{X} =(\overset{\bullet}{\bold F}\cdot\bold F^{-1})\cdot(\bold F\cdot d\vec{X}) =\bold L\cdot d\vec{x} DtD(dx)=DtD(F⋅dX)=F∙⋅X=(F∙⋅F−1)⋅(F⋅dX)=L⋅dx
任意线元 d x ⃗ d\vec{x} dx 长度 ∣ d x ⃗ ∣ |d\vec{x}| ∣dx∣ 的物质导数为:
D D t ( ∣ d x ⃗ ∣ ) = D D t d x ⃗ ⋅ d x ⃗ = 1 2 ∣ d x ⃗ ∣ [ D D t ( d x ⃗ ) ⋅ d x ⃗ + d x ⃗ ⋅ D D t ( d x ⃗ ) ] = 1 ∣ d x ⃗ ∣ ( d x ⃗ ⋅ L T + L 2 ⋅ d x ⃗ ) = 1 ∣ d x ⃗ ∣ ( d x ⃗ ⋅ D ⋅ d x ⃗ ) = l ⃗ ⋅ ( D ⋅ d x ⃗ ) \begin{aligned} &\dfrac{D}{Dt}(|d\vec{x}|) =\dfrac{D}{Dt}\sqrt{d\vec{x}\cdot d\vec{x}} =\dfrac{1}{2|d\vec{x}|}\left[\dfrac{D}{Dt}(d\vec{x})\cdot d\vec{x}+d\vec{x}\cdot\dfrac{D}{Dt}(d\vec{x})\right]\\\\ &\qquad\qquad=\dfrac{1}{|d\vec{x}|}\left(d\vec{x}\cdot\dfrac{\bold L^T+\bold L}{2}\cdot d\vec{x}\right) =\dfrac{1}{|d\vec{x}|}\left(d\vec{x}\cdot\bold D\cdot d\vec{x}\right) =\vec{l}\cdot(\bold D\cdot d\vec{x}) \end{aligned} DtD(∣dx∣)=DtDdx⋅dx=2∣dx∣1[DtD(dx)⋅dx+dx⋅DtD(dx)]=∣dx∣1(dx⋅2LT+L⋅dx)=∣dx∣1(dx⋅D⋅dx)=l⋅(D⋅dx)
可理解为 D ⋅ d x ⃗ \bold D\cdot d\vec{x} D⋅dx 在 l ⃗ \vec{l} l 上的投影。故沿单位切向量 l ⃗ \vec{l} l 的线元 d x ⃗ d\vec{x} dx 的长度的相对变化率 d l d_l dl 为:
d l ⃗ ≜ ∣ d x ⃗ ∣ ∙ ∣ d x ⃗ ∣ = d x ⃗ ∣ d x ⃗ ∣ ⋅ D ⋅ d x ⃗ ∣ d x ⃗ ∣ = l ⃗ ⋅ D ⋅ l ⃗ d_{\vec{l}} \triangleq\dfrac{\overset{\bullet}{|d\vec{x}|}}{|d\vec{x}|} =\dfrac{d\vec{x}}{|d\vec{x}|}\cdot\bold D\cdot \dfrac{d\vec{x}}{|d\vec{x}|} =\vec{l}\cdot\bold D\cdot\vec{l} dl≜∣dx∣∣dx∣∙=∣dx∣dx⋅D⋅∣dx∣dx=l⋅D⋅l
进一步讨论,在当前时刻什么方向上使得线元的长度相对变化率最大?即求解
{ max l ⃗ ( l ⃗ ⋅ D ⋅ l ⃗ ) ∣ l ⃗ ∣ = 1 \begin{cases} \max\limits_{\vec l}\ (\vec{l}\cdot\bold D\cdot\vec{l})\\\\ |\vec{l}|=1 \end{cases} ⎩ ⎨ ⎧lmax (l⋅D⋅l)∣l∣=1
采用 Lagrange 乘子法进行求解,使得问题化为如下无约束极值问题的必要条件:
{ ∂ ∂ l k [ l i l j D i j − η ( l i l j g i j − 1 ) ] = 0 l i l i − 1 = 0 \begin{cases} \dfrac{\partial}{\partial l^k}[l^il^jD_{ij}-\eta(l^il^jg_{ij}-1)]=0\\\\ l^il_i-1=0 \end{cases} ⎩ ⎨ ⎧∂lk∂[liljDij−η(liljgij−1)]=0lili−1=0
即
{ ( D i k − η g i k ) l i = 0 l i l j g i j − 1 = 0 ⟹ { ( D ∙ k i − η δ ∙ k i ) l i = 0 l i l j g i j − 1 = 0 \begin{cases} (D_{ik}-\eta g_{ik})l^i=0\\\\ l^il^jg_{ij}-1=0 \end{cases} \Longrightarrow \begin{cases} (D^i_{\bullet k}-\eta \delta^i_{\bullet k})l_i=0\\\\ l^il^jg_{ij}-1=0 \end{cases} ⎩ ⎨ ⎧(Dik−ηgik)li=0liljgij−1=0⟹⎩ ⎨ ⎧(D∙ki−ηδ∙ki)li=0liljgij−1=0
其求解等价于求解 D \bold D D 的特征值与单位特征向量问题:
( D − η I ) l ⃗ = 0 (\bold D-\eta\bold I)\vec{l}=0 (D−ηI)l=0
由于 D \bold D D 是对称张量,故存在三个实特征值 d α ( α = 1 , 2 , 3 ) d_{\alpha}(\alpha=1,2,3) dα(α=1,2,3) 并总可以找到两两垂直的单位特征方向 v ⃗ α ( α = 1 , 2 , 3 ) \vec{v}_\alpha(\alpha=1,2,3) vα(α=1,2,3)。且
d v ⃗ α = v ⃗ α ⋅ ( D ⋅ v ⃗ α ) = v ⃗ α ⋅ ( d α v ⃗ α ) = d α ( α = 1 , 2 , 3 ) d_{\vec{v}_\alpha}=\vec{v}_\alpha\cdot(\bold D\cdot\vec{v}_\alpha)=\vec{v}_\alpha\cdot(d_{\alpha}\vec{v}_\alpha)=d_\alpha\quad(\alpha=1,2,3) dvα=vα⋅(D⋅vα)=vα⋅(dαvα)=dα(α=1,2,3)
上述讨论实际上说明:在各时刻,线元长度的相对变化率取极值(驻值)的方向为伸长率张量的主方向,长度相对变化率的大小为伸长率张量的对应的驻值。
考虑线元 d x ⃗ d\vec{x} dx 单位切向量 l ⃗ \vec{l} l 的物质导数:
D l ⃗ D t = D D t ( d x ⃗ ∣ d x ⃗ ∣ ) = 1 ∣ d x ⃗ ∣ D D t ( d x ⃗ ) − d x ⃗ ∣ d x ⃗ ∣ 2 D D t ( ∣ d x ⃗ ∣ ) = L ⋅ d x ⃗ ∣ d x ⃗ ∣ − d x ⃗ ∣ d x ⃗ ∣ ( l ⃗ ⋅ D ⋅ l ⃗ ) = ( L − d l ⃗ I ) ⋅ l ⃗ \begin{aligned} &\dfrac{D\ \vec{l}}{Dt} =\dfrac{D}{Dt}\left(\dfrac{d\vec{x}}{|d\vec{x}|}\right) =\dfrac{1}{|d\vec{x}|}\dfrac{D}{Dt}(d\vec{x})-\dfrac{d\vec{x}}{|d\vec{x}|^2}\dfrac{D}{Dt}(|d\vec{x}|)\\\\ &\qquad\qquad\qquad\qquad=\bold L\cdot\dfrac{d\vec{x}}{|d\vec{x}|}-\dfrac{d\vec{x}}{|d\vec{x}|}(\vec{l}\cdot\bold D\cdot\vec{l})\\\\ &\qquad\qquad\qquad\qquad=(\bold L-d_{\vec{l}}\bold I)\cdot\vec{l} \end{aligned} DtD l=DtD(∣dx∣dx)=∣dx∣1DtD(dx)−∣dx∣2dxDtD(∣dx∣)=L⋅∣dx∣dx−∣dx∣dx(l⋅D⋅l)=(L−dlI)⋅l
其中, d l ⃗ d_{\vec{l}} dl 为 l ⃗ \vec{l} l 方向线元长度的相对变化率。又
D l ⃗ D t ⋅ l ⃗ = l ⃗ ⋅ ( L − d l ⃗ I ) ⋅ l ⃗ = l ⃗ ⋅ ( L − D ) ⋅ l ⃗ = l ⃗ ⋅ W ⋅ l ⃗ = 0 \dfrac{D\ \vec{l}}{Dt}\cdot\vec{l} =\vec{l}\cdot(\bold L-d_{\vec{l}}\bold I)\cdot\vec{l} =\vec{l}\cdot(\bold L-\bold D)\cdot\vec{l} =\vec{l}\cdot\bold W\cdot\vec{l}=0 DtD l⋅l=l⋅(L−dlI)⋅l=l⋅(L−D)⋅l=l⋅W⋅l=0
由于物质旋率张量是反对称张量。这也说明了单位切向量的物质导数与自身垂直的几何含义。
在当前时刻,存在两线元 d x ⃗ ( 1 ) d\vec{x}_{(1)} dx(1) 与 d x ⃗ ( 2 ) d\vec{x}_{(2)} dx(2),其单位切向量分别为: l ⃗ ( 1 ) 、 l ⃗ ( 2 ) \vec{l}_{(1)}、\vec{l}_{(2)} l(1)、l(2),夹角为: θ \theta θ。那么
D D t ( c o s θ ) = D D t ( l ⃗ ( 1 ) ⋅ l ⃗ ( 2 ) ) = l ⃗ ( 1 ) ⋅ D l ⃗ ( 2 ) D t + D l ⃗ ( 1 ) D t ⋅ l ⃗ ( 2 ) = l ⃗ ( 1 ) ⋅ ( L − d l ⃗ ( 2 ) I ) ⋅ l ⃗ ( 2 ) + ( L − d l ⃗ ( 1 ) I ) ⋅ l ⃗ ( 1 ) ⋅ l ⃗ ( 2 ) = l ⃗ ( 1 ) ⋅ ( L − d l ⃗ ( 2 ) I ) ⋅ l ⃗ ( 2 ) + l ⃗ ( 1 ) ⋅ ( L T − d l ⃗ ( 1 ) I ) ⋅ l ⃗ ( 2 ) = 2 l ⃗ ( 1 ) ⋅ D ⋅ l ⃗ ( 2 ) − ( d l ⃗ ( 1 ) + d l ⃗ ( 1 ) ) l ⃗ ( 1 ) ⋅ l ⃗ ( 2 ) \begin{aligned} &\quad\dfrac{D}{Dt}(cos\theta) =\dfrac{D}{Dt}(\vec{l}_{(1)}\cdot\vec{l}_{(2)})\\\\ &=\vec{l}_{(1)}\cdot\dfrac{D\ \vec{l}_{(2)}}{Dt}+\dfrac{D\ \vec{l}_{(1)}}{Dt}\cdot\vec{l}_{(2)}\\\\ &=\vec{l}_{(1)}\cdot\left(\bold L-d_{\vec{l}_{(2)}}\bold I\right)\cdot\vec{l}_{(2)}+\left(\bold L-d_{\vec{l}_{(1)}}\bold I\right)\cdot\vec{l}_{(1)}\cdot\vec{l}_{(2)}\\\\ &=\vec{l}_{(1)}\cdot\left(\bold L-d_{\vec{l}_{(2)}}\bold I\right)\cdot\vec{l}_{(2)}+\vec{l}_{(1)}\cdot\left(\bold L^T-d_{\vec{l}_{(1)}}\bold I\right)\cdot\vec{l}_{(2)}\\\\ &=2\vec{l}_{(1)}\cdot\bold D\cdot\vec{l}_{(2)}-\left(d_{\vec{l}_{(1)}}+d_{\vec{l}_{(1)}}\right)\vec{l}_{(1)}\cdot\vec{l}_{(2)} \end{aligned} DtD(cosθ)=DtD(l(1)⋅l(2))=l(1)⋅DtD l(2)+DtD l(1)⋅l(2)=l(1)⋅(L−dl(2)I)⋅l(2)+(L−dl(1)I)⋅l(1)⋅l(2)=l(1)⋅(L−dl(2)I)⋅l(2)+l(1)⋅(LT−dl(1)I)⋅l(2)=2l(1)⋅D⋅l(2)−(dl(1)+dl(1))l(1)⋅l(2)
特别地,若考虑 θ = 90 ° \theta=90\degree θ=90°,则
D D t ( c o s θ ) ∣ θ = 90 ° = − D θ D t ∣ θ = 90 ° = 2 l ⃗ ( 1 ) ⋅ D ⋅ l ⃗ ( 2 ) \left.\dfrac{D}{Dt}(cos\theta)\right|_{\theta=90\degree}=-\left.\dfrac{D\theta}{Dt}\right|_{\theta=90\degree}=2\vec{l}_{(1)}\cdot\bold D\cdot\vec{l}_{(2)} DtD(cosθ) θ=90°=−DtDθ θ=90°=2l(1)⋅D⋅l(2)
由于
D D t ( d v ) = D D t ( J d v 0 ) = J ∙ d v 0 = ▽ ⋅ v ⃗ J d v 0 = ▽ ⋅ v ⃗ d v \dfrac{D}{Dt}(dv) =\dfrac{D}{Dt}(\mathscr J dv_0) =\overset{\bullet}{\mathscr J}dv_0 =\triangledown\cdot\vec{v}{\mathscr J}dv_0 =\triangledown\cdot\vec{v}dv DtD(dv)=DtD(Jdv0)=J∙dv0=▽⋅vJdv0=▽⋅vdv
又
▽ ⋅ v ⃗ = v i ∣ i = t r ( v ⃗ ⊗ ▽ ) = t r ( L ) = t r ( D ) \triangledown\cdot\vec{v} =v^i|_i =tr(\vec{v}\otimes\triangledown) =tr(\bold L) =tr(\bold D) ▽⋅v=vi∣i=tr(v⊗▽)=tr(L)=tr(D)
故任意体元 d v dv dv 的物质导数为:
D D t ( d v ) = t r ( D ) d v \dfrac{D}{Dt}(dv)=tr(\bold D)dv DtD(dv)=tr(D)dv
则体元的相对变化率为:
d v ∙ d v = t r ( D ) \dfrac{\overset{\bullet}{dv}}{dv}=tr(\bold D) dvdv∙=tr(D)
对任意仿射量 F 、 B \bold {F、B} F、B 与 实数 δ \delta δ, 记
F ^ = F + δ B \bold{\hat{F}}=\bold F +\delta\bold B F^=F+δB
则
J ^ ≜ d e t ( F ^ ) = d e t ( F + δ B ) = d e t ( F ) d e t ( I + δ B F − 1 ) \hat{\mathscr J}\triangleq det(\bold{\hat{F}}) =det(\bold F +\delta\bold B) =det(\bold F)det(\bold I+\delta\bold B\bold F^{-1}) J^≜det(F^)=det(F+δB)=det(F)det(I+δBF−1)
进一步有:
D J ^ D δ ∣ δ = 0 = d e t ( F ) t r ( B F − 1 ) \left.\dfrac{D\hat{\mathscr J}}{D\delta}\right|_{\delta=0} =det(\bold F)tr(\bold B\bold F^{-1}) DδDJ^ δ=0=det(F)tr(BF−1)
上式运用了特征多项式展开的相关性质。得到上述结论后,令上式中 F \bold F F 代表变形梯度,且
δ = t , B = F ∙ \delta= t,\bold B=\overset{\bullet}{\bold F} δ=t,B=F∙
则有:
D d e t ( F + t F ∙ ) D t ∣ t = 0 = J t r L = J t r D \left.\dfrac{D\ det(\bold F +t\overset{\bullet}{\bold F})}{Dt}\right|_{t=0}=\mathscr{J}tr{\bold L}=\mathscr{J}tr{\bold D} DtD det(F+tF∙) t=0=JtrL=JtrD
则
[ D d e t ( F + t F ∙ ) D t ∣ t = 0 ] d v 0 = t r ( D ) d v = d v ∙ \left[\left.\dfrac{D\ det(\bold F +t\overset{\bullet}{\bold F})}{Dt}\right|_{t=0}\right]dv_0 =tr(\bold D)dv =\overset{\bullet}{dv} DtD det(F+tF∙) t=0 dv0=tr(D)dv=dv∙
由于
D D t ( N ⃗ d S ) = D D t ( J F − T ⋅ 0 N ⃗ d S 0 ) = D D t ( J F − T ) ⋅ 0 N ⃗ d S 0 = [ t r ( D ) ( J F − T ) + J ( F ∙ − 1 ) T ) ] ⋅ 0 N ⃗ d S 0 \begin{aligned} &\dfrac{D}{Dt}(\vec{N}dS) =\dfrac{D}{Dt}(\mathscr J\bold F^{-T}\cdot{_0}\vec{N} dS_0) =\dfrac{D}{Dt}(\mathscr J\bold F^{-T})\cdot{_0}\vec{N} dS_0\\\\ &\qquad\qquad\ \ =[tr(\bold D)(\mathscr J\bold F^{-T})+\mathscr J(\overset{\bullet}{\bold F}\ ^{-1})^T)]\cdot{_0}\vec{N} dS_0 \end{aligned} DtD(NdS)=DtD(JF−T⋅0NdS0)=DtD(JF−T)⋅0NdS0 =[tr(D)(JF−T)+J(F∙ −1)T)]⋅0NdS0
又
D D t ( F ⋅ F − 1 ) = F ∙ ⋅ F − 1 + F ⋅ F ∙ − 1 = 0 F ∙ − 1 = − F − 1 ⋅ F ∙ ⋅ F − 1 = − F − 1 ⋅ L \dfrac{D}{Dt}(\bold F\cdot\bold F^{-1}) =\overset{\bullet}{\bold F}\cdot\bold F^{-1}+\bold F\cdot\overset{\bullet}{\bold F}\ ^{-1}=0\\\ \\ \overset{\bullet}{\bold F}\ ^{-1}=-{\bold F}^{-1}\cdot\overset{\bullet}{\bold F}\cdot{\bold F}^{-1}=-{\bold F}^{-1}\cdot\bold L DtD(F⋅F−1)=F∙⋅F−1+F⋅F∙ −1=0 F∙ −1=−F−1⋅F∙⋅F−1=−F−1⋅L
则任意有向线元的物质导数为:
D D t ( N ⃗ d S ) = [ t r ( D ) ( J F − T ) − L T ⋅ ( J F − T ) ] ⋅ 0 N ⃗ d S 0 = [ t r ( D ) I − L T ] ⋅ N ⃗ d S \dfrac{D}{Dt}(\vec{N}dS) =[tr(\bold D)(\mathscr J\bold F^{-T})-\bold L^T\cdot(\mathscr J\bold F^{-T})]\cdot{_0}\vec{N} dS_0 =[tr(\bold D)\bold I-\bold L^T]\cdot\vec{N} dS DtD(NdS)=[tr(D)(JF−T)−LT⋅(JF−T)]⋅0NdS0=[tr(D)I−LT]⋅NdS
进一步,微元面积的物质导数为:
D d S D t = D D t N ⃗ d S ⋅ N ⃗ d S = 1 2 d S { [ t r ( D ) I − L T ] ⋅ N ⃗ d S ⋅ N ⃗ d S + N ⃗ d S ⋅ [ t r ( D ) I − L T ] ⋅ N ⃗ d S } = 1 2 d S { N ⃗ d S ⋅ [ t r ( D ) I − L ] ⋅ N ⃗ d S + N ⃗ d S ⋅ [ t r ( D ) I − L T ] ⋅ N ⃗ d S } = 1 d S [ t r ( D ) ( d S ) 2 − N ⃗ d S ⋅ L + L T 2 ⋅ N ⃗ d S ] = d S [ t r ( D ) − N ⃗ ⋅ D ⋅ N ⃗ ] \begin{aligned} &\dfrac{D\ dS}{Dt} =\dfrac{D}{Dt}\sqrt{\vec{N}dS\cdot\vec{N}dS}\\\\ &\ \qquad\ =\dfrac{1}{2dS}\left\{[tr(\bold D)\bold I-\bold L^T]\cdot\vec{N} dS\cdot\vec{N}dS+\vec{N} dS\cdot[tr(\bold D)\bold I-\bold L^T]\cdot\vec{N} dS\right\}\\\\ &\ \qquad\ =\dfrac{1}{2dS}\left\{\vec{N}dS\cdot[tr(\bold D)\bold I-\bold L]\cdot\vec{N}dS+\vec{N} dS\cdot[tr(\bold D)\bold I-\bold L^T]\cdot\vec{N} dS\right\}\\\\ &\ \qquad\ =\dfrac{1}{dS}\left[tr(\bold D)(dS)^2-\vec{N} dS\cdot\dfrac{\bold L+\bold L^T}{2}\cdot\vec{N} dS\right]\\\\ &\ \qquad\ =dS\left[tr(\bold D)-\vec{N}\cdot\bold D\cdot\vec{N}\right] \end{aligned} DtD dS=DtDNdS⋅NdS =2dS1{[tr(D)I−LT]⋅NdS⋅NdS+NdS⋅[tr(D)I−LT]⋅NdS} =2dS1{NdS⋅[tr(D)I−L]⋅NdS+NdS⋅[tr(D)I−LT]⋅NdS} =dS1[tr(D)(dS)2−NdS⋅2L+LT⋅NdS] =dS[tr(D)−N⋅D⋅N]
那么,任意有向面元 N ⃗ d S \vec{N}dS NdS 面积的相对变化率为:
d S ∙ d S = t r ( D ) − N ⃗ ⋅ D ⋅ N ⃗ = t r ( D ) − d N ⃗ \dfrac{\overset{\bullet}{dS}}{dS} =tr(\bold D)-\vec{N}\cdot\bold D\cdot\vec{N} =tr(\bold D)-d_{\vec{N}} dSdS∙=tr(D)−N⋅D⋅N=tr(D)−dN
当前时刻,伸长率张量 D \bold D D 的单位特征向量为: v ⃗ α ( α = 1 , 2 , 3 ) \vec{v}_\alpha(\alpha=1,2,3) vα(α=1,2,3) ,对应的特征值分别为: d α ( α = 1 , 2 , 3 ) d_\alpha(\alpha=1,2,3) dα(α=1,2,3),考虑沿当前 v ⃗ α \vec{v}_\alpha vα 方向的线元的方向变化率:
l ⃗ ∙ ( v ⃗ α ) = l ⃗ ∙ ∣ l ⃗ = v ⃗ α \overset{\bullet}{\vec{l}}(\vec{v}_\alpha)=\overset{\bullet}{\vec{l}}|_{\vec{l}=\vec{v}_\alpha} l∙(vα)=l∙∣l=vα
需要注意的是:
l ⃗ ∙ ( v ⃗ α ) ≠ v ⃗ α ∙ \overset{\bullet}{\vec{l}}(\vec{v}_\alpha)\ne\overset{\bullet}{\vec{v}_\alpha} l∙(vα)=vα∙
因为对线元的单位方向的物质导数表示研究的始终是同一线元,但前一时刻与下一时刻伸长率张量的特征向量可能与不同线元相重合。
l ⃗ ∙ ( v ⃗ α ) = ( L − d α I ) ⋅ v ⃗ α = ( L − D ) ⋅ v ⃗ α = W ⋅ v ⃗ α = ω ⃗ × v ⃗ α \overset{\bullet}{\vec{l}}(\vec{v}_\alpha) =(\bold L-d_{\alpha}\bold I)\cdot\vec{v}_{\alpha} =(\bold L-\bold D)\cdot\vec{v}_{\alpha} =\bold W\cdot\vec{v}_{\alpha} =\vec{\omega}\times\vec{v}_{\alpha} l∙(vα)=(L−dαI)⋅vα=(L−D)⋅vα=W⋅vα=