深度学习入门笔记2-从零开始实现线性回归

该节内容主要摘自李沐大神的 动手学AI。
sec_linear_scratch

在了解线性回归的关键思想之后,我们可以开始通过代码来动手实现线性回归了。
在这一节中,(我们将从零开始实现整个方法,
包括数据流水线、模型、损失函数和小批量随机梯度下降优化器
)。
虽然现代的深度学习框架几乎可以自动化地进行所有这些工作,但从零开始实现可以确保我们真正知道自己在做什么。
同时,了解更细致的工作原理将方便我们自定义模型、自定义层或自定义损失函数。
在这一节中,我们将只使用张量和自动求导。
在之后的章节中,我们会充分利用深度学习框架的优势,介绍更简洁的实现方式。

%matplotlib inline
import random
import torch
from d2l import torch as d2l

生成数据集

为了简单起见,我们将[根据带有噪声的线性模型构造一个人造数据集。]
我们的任务是使用这个有限样本的数据集来恢复这个模型的参数。
我们将使用低维数据,这样可以很容易地将其可视化。
在下面的代码中,我们生成一个包含1000个样本的数据集,
每个样本包含从标准正态分布中采样的2个特征。
我们的合成数据集是一个矩阵 X ∈ R 1000 × 2 \mathbf{X}\in \mathbb{R}^{1000 \times 2} XR1000×2

(**我们使用线性模型参数 w = [ 2 , − 3.4 ] ⊤ \mathbf{w} = [2, -3.4]^\top w=[2,3.4] b = 4.2 b = 4.2 b=4.2
和噪声项 ϵ \epsilon ϵ生成数据集及其标签:

y = X w + b + ϵ . \mathbf{y}= \mathbf{X} \mathbf{w} + b + \mathbf\epsilon. y=Xw+b+ϵ.
**)

ϵ \epsilon ϵ可以视为模型预测和标签时的潜在观测误差。
在这里我们认为标准假设成立,即 ϵ \epsilon ϵ服从均值为0的正态分布。
为了简化问题,我们将标准差设为0.01。
下面的代码生成合成数据集。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-felptTQR-1686910518322)(output_8_0.svg)]

def synthetic_data(w, b, num_examples):  #@save
    """生成y=Xw+b+噪声"""
    X = torch.normal(0, 1, (num_examples, len(w)))
    y = torch.matmul(X, w) + b
    y += torch.normal(0, 0.01, y.shape)
    return X, y.reshape((-1, 1))
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)

注意,[features中的每一行都包含一个二维数据样本,
labels中的每一行都包含一维标签值(一个标量)
]。

print('features:', features[0],'\nlabel:', labels[0])
features: tensor([-0.3679, -1.8471]) 
label: tensor([9.7361])

通过生成第二个特征features[:, 1]labels的散点图,
可以直观观察到两者之间的线性关系。

d2l.set_figsize()
d2l.plt.scatter(features[:, 1].detach().numpy(), labels.detach().numpy(), 1);


[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-g5zaHtHw-1686910505324)(output_8_0.svg)]

读取数据集

回想一下,训练模型时要对数据集进行遍历,每次抽取一小批量样本,并使用它们来更新我们的模型。
由于这个过程是训练机器学习算法的基础,所以有必要定义一个函数,
该函数能打乱数据集中的样本并以小批量方式获取数据。

在下面的代码中,我们[定义一个data_iter函数,
该函数接收批量大小、特征矩阵和标签向量作为输入,生成大小为batch_size的小批量
]。
每个小批量包含一组特征和标签。

def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    # 这些样本是随机读取的,没有特定的顺序
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        batch_indices = torch.tensor(
            indices[i: min(i + batch_size, num_examples)])
        yield features[batch_indices], labels[batch_indices]

通常,我们利用GPU并行运算的优势,处理合理大小的“小批量”。
每个样本都可以并行地进行模型计算,且每个样本损失函数的梯度也可以被并行计算。
GPU可以在处理几百个样本时,所花费的时间不比处理一个样本时多太多。

我们直观感受一下小批量运算:读取第一个小批量数据样本并打印。
每个批量的特征维度显示批量大小和输入特征数。
同样的,批量的标签形状与batch_size相等。

batch_size = 10

for X, y in data_iter(batch_size, features, labels):
    print(X, '\n', y)
    break
tensor([[ 0.1649, -1.1651],
        [-2.0755, -1.0165],
        [-0.2189,  0.7607],
        [ 0.6833,  0.3537],
        [-0.2736, -2.0485],
        [-0.3026,  0.9771],
        [ 2.4795,  0.6881],
        [-0.2045, -0.8509],
        [-0.1353,  0.5476],
        [ 0.3371, -0.0479]]) 
 tensor([[ 8.4901],
        [ 3.5015],
        [ 1.1779],
        [ 4.3752],
        [10.6125],
        [ 0.2845],
        [ 6.8094],
        [ 6.6776],
        [ 2.0598],
        [ 5.0189]])

当我们运行迭代时,我们会连续地获得不同的小批量,直至遍历完整个数据集。
上面实现的迭代对教学来说很好,但它的执行效率很低,可能会在实际问题上陷入麻烦。
例如,它要求我们将所有数据加载到内存中,并执行大量的随机内存访问。
在深度学习框架中实现的内置迭代器效率要高得多,
它可以处理存储在文件中的数据和数据流提供的数据。

初始化模型参数

[在我们开始用小批量随机梯度下降优化我们的模型参数之前],
(我们需要先有一些参数)。
在下面的代码中,我们通过从均值为0、标准差为0.01的正态分布中采样随机数来初始化权重,
并将偏置初始化为0。

w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)

在初始化参数之后,我们的任务是更新这些参数,直到这些参数足够拟合我们的数据。
每次更新都需要计算损失函数关于模型参数的梯度。
有了这个梯度,我们就可以向减小损失的方向更新每个参数。
因为手动计算梯度很枯燥而且容易出错,所以没有人会手动计算梯度。
我们使用 :numref:sec_autograd中引入的自动微分来计算梯度。

定义模型

接下来,我们必须[定义模型,将模型的输入和参数同模型的输出关联起来。]
回想一下,要计算线性模型的输出,
我们只需计算输入特征 X \mathbf{X} X和模型权重 w \mathbf{w} w的矩阵-向量乘法后加上偏置 b b b
注意,上面的 X w \mathbf{Xw} Xw是一个向量,而 b b b是一个标量。
回想一下 :numref:subsec_broadcasting中描述的广播机制:
当我们用一个向量加一个标量时,标量会被加到向量的每个分量上。

def linreg(X, w, b):  #@save
    """线性回归模型"""
    return torch.matmul(X, w) + b

[定义损失函数]

因为需要计算损失函数的梯度,所以我们应该先定义损失函数。
这里我们使用 :numref:sec_linear_regression中描述的平方损失函数。
在实现中,我们需要将真实值y的形状转换为和预测值y_hat的形状相同。

def squared_loss(y_hat, y):  #@save
    """均方损失"""
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

(定义优化算法)

正如我们在 :numref:sec_linear_regression中讨论的,线性回归有解析解。
尽管线性回归有解析解,但本书中的其他模型却没有。
这里我们介绍小批量随机梯度下降。

在每一步中,使用从数据集中随机抽取的一个小批量,然后根据参数计算损失的梯度。
接下来,朝着减少损失的方向更新我们的参数。
下面的函数实现小批量随机梯度下降更新。
该函数接受模型参数集合、学习速率和批量大小作为输入。每
一步更新的大小由学习速率lr决定。
因为我们计算的损失是一个批量样本的总和,所以我们用批量大小(batch_size
来规范化步长,这样步长大小就不会取决于我们对批量大小的选择。

def sgd(params, lr, batch_size):  #@save
    """小批量随机梯度下降"""
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()

训练

现在我们已经准备好了模型训练所有需要的要素,可以实现主要的[训练过程]部分了。
理解这段代码至关重要,因为从事深度学习后,
相同的训练过程几乎一遍又一遍地出现。
在每次迭代中,我们读取一小批量训练样本,并通过我们的模型来获得一组预测。
计算完损失后,我们开始反向传播,存储每个参数的梯度。
最后,我们调用优化算法sgd来更新模型参数。

概括一下,我们将执行以下循环:

  • 初始化参数
  • 重复以下训练,直到完成
    • 计算梯度 g ← ∂ ( w , b ) 1 ∣ B ∣ ∑ i ∈ B l ( x ( i ) , y ( i ) , w , b ) \mathbf{g} \leftarrow \partial_{(\mathbf{w},b)} \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} l(\mathbf{x}^{(i)}, y^{(i)}, \mathbf{w}, b) g(w,b)B1iBl(x(i),y(i),w,b)
    • 更新参数 ( w , b ) ← ( w , b ) − η g (\mathbf{w}, b) \leftarrow (\mathbf{w}, b) - \eta \mathbf{g} (w,b)(w,b)ηg

在每个迭代周期(epoch)中,我们使用data_iter函数遍历整个数据集,
并将训练数据集中所有样本都使用一次(假设样本数能够被批量大小整除)。
这里的迭代周期个数num_epochs和学习率lr都是超参数,分别设为3和0.03。
设置超参数很棘手,需要通过反复试验进行调整。
我们现在忽略这些细节,以后会在 :numref:chap_optimization中详细介绍。

lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y)  # X和y的小批量损失
        # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
        # 并以此计算关于[w,b]的梯度
        l.sum().backward()
        sgd([w, b], lr, batch_size)  # 使用参数的梯度更新参数
    with torch.no_grad():
        train_l = loss(net(features, w, b), labels)
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')
epoch 1, loss 0.043705
epoch 2, loss 0.000172
epoch 3, loss 0.000047

因为我们使用的是自己合成的数据集,所以我们知道真正的参数是什么。
因此,我们可以通过[比较真实参数和通过训练学到的参数来评估训练的成功程度]。
事实上,真实参数和通过训练学到的参数确实非常接近。

print(f'w的估计误差: {true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差: {true_b - b}')
w的估计误差: tensor([ 0.0003, -0.0002], grad_fn=)
b的估计误差: tensor([0.0010], grad_fn=)

注意,我们不应该想当然地认为我们能够完美地求解参数。
在机器学习中,我们通常不太关心恢复真正的参数,而更关心如何高度准确预测参数。
幸运的是,即使是在复杂的优化问题上,随机梯度下降通常也能找到非常好的解。
其中一个原因是,在深度网络中存在许多参数组合能够实现高度精确的预测。

小结

  • 我们学习了深度网络是如何实现和优化的。在这一过程中只使用张量和自动微分,不需要定义层或复杂的优化器。
  • 这一节只触及到了表面知识。在下面的部分中,我们将基于刚刚介绍的概念描述其他模型,并学习如何更简洁地实现其他模型。

你可能感兴趣的:(深度学习入门,深度学习,笔记,线性回归)