6.开源非对称加密算法SM2实现

6.开源非对称加密算法SM2实现

前期内容导读:

  1. 开源加解密RSA/AES/SHA1/PGP/SM2/SM3/SM4介绍
  2. 开源AES/SM4/3DES对称加密算法介绍及其实现
  3. 开源AES/SM4/3DES对称加密算法的验证实现
  4. 开源非对称加密算法RSA/SM2实现及其应用
  5. 开源非对称加密算法RSA实现

1. 开源组件 非对称秘钥加密介绍

  • 加密组件引入方法:
    <dependency>
        <groupId>com.biuqugroupId>
        <artifactId>bq-encryptorartifactId>
        <version>1.0.1version>
    dependency>
    

1.1 SM2的加解密实现

  • 加解密核心逻辑
    public byte[] doCipher(byte[] data, byte[] key, int cipherMode)
    {
        SM2Engine.Mode mode = SM2Engine.Mode.C1C2C3;
        if (!this.getPaddingMode().equalsIgnoreCase(String.valueOf(DEFAULT_MODE)))
        {
            mode = SM2Engine.Mode.C1C3C2;
        }
    
        SM2Engine sm2Engine = new SM2Engine(mode);
    
        this.initSm2Engine(sm2Engine, key, cipherMode);
    
        try
        {
            return sm2Engine.processBlock(data, 0, data.length);
        }
        catch (Exception e)
        {
            throw new EncryptionException("failed to do sm2 cipher.", e);
        }
    }
    
    private void initSm2Engine(SM2Engine sm2Engine, byte[] key, int cipherMode)
    {
        if (Cipher.ENCRYPT_MODE == cipherMode)
        {
            ECPublicKey keyObj = (ECPublicKey)this.toPubKey(key);
            ECDomainParameters domainParam = this.getDomainParam(keyObj);
            ECKeyParameters keyParam = new ECPublicKeyParameters(keyObj.getQ(), domainParam);
            byte[] initKey = UUID.randomUUID().toString().getBytes(StandardCharsets.UTF_8);
            sm2Engine.init(true, new ParametersWithRandom(keyParam, this.createRandom(initKey)));
        }
        else
        {
            ECPrivateKey keyObj = (ECPrivateKey)this.toPriKey(key);
            ECDomainParameters domainParam = this.getDomainParam(keyObj);
            ECKeyParameters keyParam = new ECPrivateKeyParameters(keyObj.getD(), domainParam);
            sm2Engine.init(false, keyParam);
        }
    }  
    

    说明:

    1. 上面的代码阐述了加解密的核心流程:根据二进制生成秘钥,再基于单独的API计算得到加解密结果,该计算逻辑完全不同于以往的加解密API;
    2. 通过上述核心代码逻辑,再对比上篇5.非对称加密算法RSA实现,可知SM2本身是支持分段的;
    3. 通过秘钥二进制反向生成秘钥对象是一个有意思且有点复杂的事情,后面再单独说明;

1.2 SM2生成秘钥及转换实现

  • 秘钥生成逻辑

    public KeyPair createKey(byte[] initKey)
    {
        try
        {
            ECGenParameterSpec paramSpec = new ECGenParameterSpec(SM2_VERSION);
            KeyPairGenerator keyGen = KeyPairGenerator.getInstance(ALGORITHM, this.getProvider());
            if (null == initKey)
            {
                initKey = UUID.randomUUID().toString().getBytes(StandardCharsets.UTF_8);
            }
            SecureRandom random = this.createRandom(initKey);
            keyGen.initialize(paramSpec, random);
            return keyGen.generateKeyPair();
        }
        catch (Exception e)
        {
            throw new EncryptionException("failed to get sm2 key.", e);
        }
    }
    
  • 公钥、私钥反向生成逻辑

    public PublicKey toPubKey(byte[] pubKey)
    {
        try
        {
            String hexKey = Hex.toHexString(pubKey);
            KeyFactory kf = KeyFactory.getInstance(ALGORITHM, this.getProvider());
            if (hexKey.startsWith(STANDARD_HEX_KEY_PREFIX))
            {
                return kf.generatePublic(new X509EncodedKeySpec(pubKey));
            }
            else
            {
                // 获取SM2相关参数
                X9ECParameters ecParam = GMNamedCurves.getByName(SM2_VERSION);
                // 将公钥HEX字符串转换为椭圆曲线对应的点
                ECCurve ecCurve = ecParam.getCurve();
                ECPoint ecPoint = ecCurve.decodePoint(pubKey);
                // 椭圆曲线参数规格
                ECParameterSpec ecSpec = new ECParameterSpec(ecCurve, ecParam.getG(), ecParam.getN(), ecParam.getH());
                // 将椭圆曲线点转为公钥KEY对象
                return kf.generatePublic(new ECPublicKeySpec(ecPoint, ecSpec));
            }
        }
        catch (Exception e)
        {
            throw new EncryptionException("failed to get sm2 pub key.", e);
        }
    }
    
    public PrivateKey toPriKey(byte[] priKey)
    {
        try
        {
            String hexKey = Hex.toHexString(priKey);
            KeyFactory kf = KeyFactory.getInstance(ALGORITHM, this.getProvider());
            if (hexKey.startsWith(STANDARD_HEX_KEY_PREFIX))
            {
                PKCS8EncodedKeySpec keySpec = new PKCS8EncodedKeySpec(priKey);
                return kf.generatePrivate(keySpec);
            }
            else
            {
                // 获取SM2相关参数
                X9ECParameters ecParam = GMNamedCurves.getByName(SM2_VERSION);
                ECCurve ecCurve = ecParam.getCurve();
                // 椭圆曲线参数规格
                ECParameterSpec ecSpec = new ECParameterSpec(ecCurve, ecParam.getG(), ecParam.getN(), ecParam.getH());
                // 将私钥HEX字符串转换为16进制的数字值
                BigInteger bigInteger = new BigInteger(Hex.toHexString(priKey), EncryptionConst.HEX_UNIT);
                // 将X值转为私钥KEY对象
                return kf.generatePrivate(new ECPrivateKeySpec(bigInteger, ecSpec));
            }
        }
        catch (Exception e)
        {
            throw new EncryptionException("failed to get sm2 pri key.", e);
        }
    }
    

    说明:SM2基于椭圆的原理来加解密,其秘钥生成和解析方式也与其它方式不同。

    1. SM2支持标准的秘钥生成方式:
    BaseSingleSignature sm2 = new Sm2Encryption();
    KeyPair keyPair = sm2.createKey(UUID.randomUUID().toString().getBytes(StandardCharsets.UTF_8));
    byte[] priKey0 = keyPair.getPrivate().getEncoded();
    byte[] pubKey0 = keyPair.getPublic().getEncoded();
    
    1. SM2支持非标准的秘钥生成方式:
    BaseSingleSignature sm2 = new Sm2Encryption();
    KeyPair keyPair = sm2.createKey(UUID.randomUUID().toString().getBytes(StandardCharsets.UTF_8));
    byte[] priKey1 = ((BCECPrivateKey)keyPair.getPrivate()).getD().toByteArray();
    byte[] pubKey1 = ((BCECPublicKey)keyPair.getPublic()).getQ().getEncoded(false);
    byte[] pubKey2 = ((BCECPublicKey)keyPair.getPublic()).getQ().getEncoded(true);
    
    1. 上述正文部分的秘钥转换逻辑可以无感兼容上述各种秘钥场景。有兴趣可以看看此算法的单元测试类。PS:网上资料通常只描述了其中一种秘钥生成场景,但是相互间是不兼容的。
  • 签名和验签判定逻辑:

    public byte[] sign(byte[] data, byte[] key)
    {
        try
        {
            PrivateKey priKey = this.toPriKey(key);
            Signature signature = Signature.getInstance(this.getSignatureAlg(), this.getProvider());
            signature.initSign(priKey);
            signature.update(data);
            return signature.sign();
        }
        catch (Exception e)
        {
            throw new EncryptionException("failed to signature.", e);
        }
    }
    
    public boolean verify(byte[] data, byte[] key, byte[] sign)
    {
        try
        {
            PublicKey pubKey = this.toPubKey(key);
            Signature signature = Signature.getInstance(this.getSignatureAlg(), this.getProvider());
            signature.initVerify(pubKey);
            signature.update(data);
            return signature.verify(sign);
        }
        catch (Exception e)
        {
            throw new EncryptionException("failed to verify signature.", e);
        }
    }
    
  • SM2加密批量验证逻辑

    @Test
    public void encrypt()
    {
        int[] encLengths = {256};
        super.encrypt(encLengths);
    }
    
    @Test
    public void testEncryptAndSign()
    {
        String initKey = UUID.randomUUID() + new String(RandomUtils.nextBytes(5000), StandardCharsets.UTF_8);
        int[] encLengths = {256};
        BaseSingleSignature encryption = new Sm2Encryption();
        for (int encLen : encLengths)
        {
            encryption.setEncryptLen(encLen);
            KeyPair keyPair = encryption.createKey(initKey.getBytes(StandardCharsets.UTF_8));
            super.testEncryptAndSign(encryption, keyPair.getPrivate().getEncoded(), keyPair.getPublic().getEncoded());
        }
    }  
    

    说明:

    1. SM2可以不用设置加密长度,因为默认只有一个,同理我们也无需关心其填充算法;
    2. 通过单元测试对比RSA算法可知,SM2由于秘钥非常短,其秘钥生成和加解密效率明显高于RSA;

2. 总结:

  1. 基于BouncyCastleSM2由于其算法独特性,与其它的算法实现差异加大,但是在实际使用时,由于其秘钥非常短,在核心的加解密执行效率上是有一定优势的;
  2. SM2支持多种方式的秘钥生成,本开源组件较好地解决了秘钥不同方式生成的兼容问题;
  3. SM2算法相对来说还比较新,在有些秘改(国密改造)场景时,还无法做到。因为大部分开源组件只支持标准协议,一般支持p256v1非对称加密,但是不支持sm2p256v1,国人仍需努力。

你可能感兴趣的:(biuqu项目,加解密组件,java,SM2,RSA,加密,国密)