- YashanDB表介绍
数据库
本文内容来自YashanDB官网,原文内容请见https://doc.yashandb.com/yashandb/23.3/zh/%E6%A6%82%E5%BF%B5%...在关系型数据库中一个表就是一个关系(Relation),一个关系数据库可以包含多个表。表是一种按行、列排列的具有相关信息的逻辑结构,是关系数据库中组织数据的基本单元。表的元素列数据库中表包含若干个列(或字段),列表示关系模型的
- DeepSeek的训练与优化流程
程序猿000001号
DeepSeek训练优化
DeepSeek的训练与优化流程一、数据工程体系1.多模态数据融合处理动态数据湖架构:实时摄入互联网文本、科学论文、专利文献、传感器数据等20+数据源日均处理原始数据量达1.2PB,支持200+文件格式自动解析智能清洗流水线:基于大模型的语义去重算法,重复数据识别准确率99.6%创新应用对抗网络生成噪声数据,增强模型鲁棒性专利级数据质量评估体系(DQAS3.0)包含87个质量维度2.知识增强处理结
- DeepSeek行业应用实践报告100+份汇总解读|附PDF下载
数据挖掘深度学习机器学习算法
原文链接:https://tecdat.cn/?p=40240在当下快速发展的科技浪潮中,人工智能(AI)已成为推动各行业变革的核心力量。AI大模型的出现,更是为众多领域带来了全新的发展机遇与挑战。本报告聚焦于AI大模型中的佼佼者——DeepSeek,通过深度剖析其技术特性、应用场景、市场表现以及未来趋势,为读者呈现一个全面且深入的AI行业发展图景。本报告汇总洞察基于文末157份DeepSeek行
- 正则化(Regularization)和正则表达式(Regular Expression)区别
Dontla
正则表达式
文章目录1.**正则化(Regularization)**2.**正则表达式(RegularExpression)**关键区别为什么名字相近?正则化(Regularization)和正则表达式(RegularExpression)不是同一个概念,它们是两个完全不同的术语,应用于不同的领域。1.正则化(Regularization)领域:机器学习/统计学。定义:正则化是一种用于防止模型过拟合(Ove
- 搜广推校招面经十九
Y1nhl
搜广推面经搜索引擎推荐算法python求职招聘
快手推荐算法一、1*1的cnn有什么作用?1.1.降维与通道数调整(ChannelReduction)在CNN中,特征图(FeatureMap)通常有多个通道(channels)。1×1卷积可以用于减少通道数,从而降低计算量,提高模型效率。1×1卷积可以增加通道数,以增强特征表达能力。示例代码(PyTorch):importtorchimporttorch.nnasnnconv1x1=nn.Con
- 2025【修复版】红娘金媒10.3.1婚恋相亲系统源码+PC+微信小程序+抖音小程序+公众号+接入三端+安装教程
百创科技
源码与教程源码下载小程序微信小程序
1.红娘服务红娘服务模块是该系统的一大特色。专业红娘会通过分析用户的个人资料和偏好,为用户提供精准的配对建议和个性化服务。用户可以预约红娘服务,通过红娘的介入,提升配对成功率。2.相亲活动相亲活动模块用于组织和管理线下或线上相亲活动。用户可以报名参加系统组织的各类相亲活动,通过集体活动认识更多异性。系统会发布活动信息,审核报名用户,并向报名成功的用户推送活动通知和后续反馈。3.交友匹配交友匹配模块
- 菜鸟的成长之路
东风吹破了青花瓷
计算机数据结构与算法基础篇入门
菜鸟的成长之路基础能力数据结构与算法数据结构链表数组栈队列字典bitset树堆完全二叉树平衡二叉树二叉查找树B树红黑树lsm树图通用算法排序十种排序算法查找二分查找深度广度优先搜索分治贪心回朔动态规划网络协议OSITCP/IP状态转移拥塞控制可靠工作原理socket编程HTTP/HTTPSIO模型同步IOreactor阻塞IO非阻塞IOIO多路复用信号驱动异步IOC10K问题长链接短链接编译原理l
- 使用OpenAI LLM与Neo4j数据库进行自然语言交互
bBADAS
neo4j数据库交互python
技术背景介绍在现代数据分析和应用开发中,图数据库以其独特的强大功能越来越受到重视。其中,Neo4j是最受欢迎的图数据库之一。结合自然语言处理(NLP),可以使数据查询变得更加直观和便捷。本篇文章将介绍如何使用OpenAI的语言模型将自然语言问题转换成Cypher查询,并通过Neo4j数据库执行该查询,并给出自然语言的响应。核心原理解析我们的目标是实现一个系统,该系统能够接受自然语言输入,将其转换为
- 机器学习基本篇
胖胖的小肥猫
机器学习
1基本概念机器学习,分为回归,分类,聚类,降维有监督学习回归,分类,有特征,有标签,进行训练,然后对新数据进行预测无监督学习聚类,降维。题目越多,训练越好,2基本流程数据预处理——模型训练与评估可以优化为获取数据——数据预处理——EDA分析——特征工程——模型训练——可解释性分析2.0数据获取利用kaggle,天池等平台的开源数据,2.1预处理目的:让数据更符合逻辑让数据更容易计算借助函数实现变换
- 地平线x5下运行yolo11s-seg模型
zgrobot
机器人yolo11实例分割地平线x5
经过地瓜机器人工作人员(感谢吴超同学)的及时技术支持,整体比较顺利的跑起来了yolo11s-seg分割模型。将一些经验记录下来:首先下载使用docker镜像:https://developer.d-robotics.cc/forumDetail/228559182180396619https://developer.d-robotics.cc/forumDetail/251934919646096
- Linux 查看文件的超强命令集合与实用技巧大揭秘
疯狂的键盘侠
linuxlinux
Linux查看文件的超强命令集合与实用技巧大揭秘在Linux系统这片广阔天地里,查看文件内容是日常操作中最频繁的任务之一。无论是排查系统故障、分析日志,还是研读配置文档,掌握多样化的文件查看命令及技巧,都能让你如虎添翼,迅速定位所需信息。今天,就为大家呈上这份精心整理的Linux查看文件命令与技巧指南。一、基础查看命令cat:全称concatenate,简单直接,用于查看文本文件内容并输出到终端。
- java nio编程实例_Java 网络IO编程总结(BIO、NIO、AIO均含完整实例代码)
weixin_39723010
javanio编程实例
1、BIO编程1.1、传统的BIO编程网络编程的基本模型是C/S模型,即两个进程间的通信。服务端提供IP和监听端口,客户端通过连接操作想服务端监听的地址发起连接请求,通过三次握手连接,如果连接成功建立,双方就可以通过套接字进行通信。传统的同步阻塞模型开发中,ServerSocket负责绑定IP地址,启动监听端口;Socket负责发起连接操作。连接成功后,双方通过输入和输出流进行同步阻塞式通信。简单
- 内存服务器主要是指什么?
wanhengidc
服务器运维
内存服务器也可以被称为内存计算服务器或者是内存驱动服务器,主要是一种采用了大容量内存作为主要存储介质的服务器,内存服务器的主要特点就是,可以在内存中存储和处理数据信息,不需要再依赖于磁盘,能够为企业提供更快的数据访问速度。内存服务器一般会采用分布式内存架构,将多个服务器节点组合成一个内存集群,可以进行共享内存资源,使内存服务器获得良好的扩展性,以此来支持一些大规模的并发操作;同时内存服务器可以存储
- 解锁机器学习核心算法 | 支持向量机:机器学习中的分类利刃
紫雾凌寒
AI炼金厂机器学习算法支持向量机python深度学习分类人工智能
一、引言在机器学习的庞大算法体系中,有十种算法被广泛认为是最具代表性和实用性的,它们犹如机器学习领域的“十大神器”,各自发挥着独特的作用。这十大算法包括线性回归、逻辑回归、决策树、随机森林、K-近邻算法、K-平均算法、支持向量机、朴素贝叶斯算法、降维算法、梯度增强算法。它们涵盖了回归、分类、聚类、降维等多个机器学习任务领域,是众多机器学习应用的基础和核心。而在这十大算法中,支持向量机(Suppor
- 基于python sanic框架,使用Nacos进行微服务管理
一醉千秋
python+银河麒麟微服务java架构
微服务软件系统构建方式,已经很普及了,通过开源的sanic进行微服务管理,便捷,技术也比较成熟,而在项目实际应用过程中,微服务类型不仅有java的,还有nodejs、python等,尤其是结合算法模型构建的python接口,需要在Nacos进行注册管理。本文内容耗时2天踏坑,亲测一切ok。参考资源Docker安装nacos(图文并茂,避免踩坑,一步到位)_docker创建nacos容器需要挂载哪些
- 收藏不迷路 —— Flutter 转场动效大合集
岛上码农
Flutter动画专题flutterandroid移动端开发跨平台iOS
前言动画经常会用于场景切换,比如滑动,缩放,尺寸变化,为应对这样的场景转换需要,Flutter提供了Transition系列的动画组件,可以让场景转换动画变得更加简单。本篇为你整理了常用的Transition组件的应用。CupertinoFullscreenDialogTransition名称显示是苹果风格的全屏对话转换动效,构造方法如下:CupertinoFullscreenDialogTran
- 新书速览|细说PyTorch深度学习:理论、算法、模型与编程实现
全栈开发圈
深度学习pytorch算法
超详细的PyTorch深度学习入门书,100余个编程示例+6大热点案例,大咖带路,边学边实践。本书特点:1.专家编撰:由资深专家精心编撰,通俗易懂,娓娓道来2.范例丰富:100余个编程教学示例,帮你深入理解,边学习、边操练。3.实战应用:6大典型应用,原理与实操并重,快速掌握提升实战能力。4技术先进:视觉transformer模型详解,紧跟大模型核心技术。5易于上手:Pytorch详解并使用Pyt
- jvm的内存分配机制
四条腿
java虚拟机jvm内存分配内存
在学习jvm的内存分配的时候,看到的这篇博客,该博客对jvm的内存分配总结的很好,同时也利用jvm的内存模型解释了java程序中有关参数传递的问题。博客出处:http://www.cnblogs.com/hellocsl/p/3969768.html?utm_source=tuicool&utm_medium=referral看了此博客后,发现应该去深入学习下jvm的内存模型,就是去认真学习下《深
- 【YOLO模型】(1)--YOLO是什么
方世恩
YOLOYOLO人工智能目标检测
一、什么是YOLOYOLO(YouOnlyLookOnce)是一种基于深度学习的目标检测算法,由JosephRedmon等人于2016年提出。1.核心思想它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位置。2.原理YOLO算法将输入图像分成SxS个网格,每个网格负责预测该网格内是否存在目标以及目标的类别和位置信息。此外,YOLO算法还采用了多尺度特征融合的技术
- LLM 参数解析:使用 OpenAI API 在 Python 中的实用指南(含示例)
真智AI
python人工智能chatgpt
当你使用大语言模型(LLM)时,可能会注意到,即使提交相同的请求,多次运行后仍然会得到不同的回应。这是因为LLM具有概率性,它们的输出基于所学到的模式和概率,而不是固定规则。幸运的是,你可以通过调整特定的参数来控制LLM的行为,就像微调收音机的旋钮来调整到想要的电台一样。理解这些参数可以帮助你更好地定制LLM的输出,使其更具可预测性或创造性,具体取决于你的需求。在本文中,我们将探讨多个关键参数,这
- deepseek本地部署后做微调训练实现智能对话的一些建议
慧香一格
AI学习deepseek服务器AI
在本地部署大模型后,进行微调和训练以实现智能对话,通常需要按照以下步骤操作。以下是详细的指导内容:1.准备数据集在微调大模型之前,需要准备适合的训练数据集。数据集应满足以下要求:格式:通常使用JSONL(JSONLines)格式,每行包含一个训练样本。内容:数据应包含对话的上下文和目标输出,例如:{"context":"你好!今天天气不错。","response":"是的,天气很好,适合出去走走。
- 大模型进化论:AI产业落地将卷向何方?
科技云报道
人工智能大数据
科技云报到原创。2024年,是大模型翻天覆地的一年。“百模大战”爆发不久,大模型价格战随之而来,成本高昂的大模型几乎进入了免费时代。大模型从庞大的实验室工具,转变为高效灵活的应用助手,以狂飙猛进的速度在众多行业落地生根。不再有人质疑大模型是“拿着锤子找钉子”,更急迫的需求来自市场端。行业对大模型应用的渴望推动着AIAgent走向前台,围绕AIAgent的混战已然开启。与此同时,大模型的技术范式飞速
- 科技云报到:从大模型到云端,“AI+云计算”还能讲出什么新故事
科技云报道
云计算大模型云计算
科技云报到原创。2024年的大模型产业,注定将是会被反复提起的一页。这一年,被按下加速键的市场刚刚过半,就已经显示出冰火两重天的格局。算法的单模态扩展到多模态,趋势如燎原之火,让全球陷入对世界模型畅想的狂欢中;一级市场逐渐走向冷静,投资人开始频频向企业要收入,百模齐发迅速被简化为几家独角兽之间的资本与技术持久战。云服务巨头则以一种标准制定者,以及顶级大模型团队背后力量的角色出现,成为市场中隐形的力
- 推动AI云产业向深向实,云·AI·算力创新发展大会即将启幕
科技云报道
云计算AI云计算
近年来,以AIGC为代表的新兴技术正加速演进,全球站在智能化变革的起点,人工智能与云计算的深度融合,也驱动云计算进入第三次发展浪潮,迎来前所未有的机遇。伴随AI的快速发展,2024年《政府工作报告》明确提出,制定支持数字经济高质量发展政策,深化大数据、人工智能等研发应用,开展“人工智能+”行动。这意味着AI正在成为产业创新的核心抓手和驱动新质生产力的关键引擎,而云计算作为基础底座将在其中扮演至关重
- m1处理器macbook使用qemu模拟运行RT-Thread
想学rtos的带土
m1macrt-threadiot物联网macosrisc-v
最近准备深入学习一下RTOS,好巧不巧的是在前几天换了m1的macbookair,于是想要在电脑上配置一下RT-Thread的开发环境,网上搜了一大堆,没有看到符合需求的相关教程(真的很少很少,哭了,给我整崩溃!)。不过在几天的东平西凑后,成功在我的电脑上完成了RT-Thread的编译与运行。现在分享出来,有需要的可以参考一下。1.工具python3.11.5.我这里应该是用的苹果自带的,这里不用
- 10分钟搭建钉钉DeepSeek AI助手:无代码实现智能对话
ivwdcwso
运维钉钉人工智能运维DeepSeekAI
引言DeepSeek最近发布了两款先进的AI模型:V3和R1。其中V3适用于对话AI和内容生成等通用场景,R1则专注于编程和数学等推理任务。借助阿里云百炼提供的DeepSeek模型API,我们可以轻松实现与DeepSeek的对话功能。本文将详细介绍如何使用阿里云AppFlow在钉钉中快速配置DeepSeekAI助手,整个过程无需编写代码,10分钟即可完成。一、创建钉钉应用©ivwdcwso(ID:
- Docker下使用llama.cpp部署带Function calling和Json Mode功能的Mistral 7B模型
shizidushu
dockerllama语言模型llama.cppmistral-7b
Docker下使用llama.cpp部署带Functioncalling和JsonMode功能的Mistral7B模型说明:首次发表日期:2024-08-27参考:https://www.markhneedham.com/blog/2024/06/23/mistral-7b-function-calling-llama-cpp/https://github.com/abetlen/llama-cp
- 深入剖析模型推理:原理、技术与挑战
♢.*
人工智能模型推理
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、Java与Python的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!引言在当今人工智能飞速发展的时代,模型
- M1 Mac双系统搭建qemu riscv linux仿真
灰灰h
操作系统经验分享linuxrisc-vmacos
前言实验需要riscv仿真,网上没有针对m1的配置教程,故在此整理下。本人用的m1macbookpro,系统12.3。参考到的链接:https://github.com/AsahiLinuxhttps://risc-v-getting-started-guide.readthedocs.io/en/latest/linux-qemu.htmlhttps://zhuanlan.zhihu.com/p
- Windows Docker Desktop部署MaxKB详细教程
Roc-xb
docker容器运维MaxKB
MaxKB(MaxKnowledgeBase)是一款基于大语言模型(LLM)和检索增强生成(RAG)技术的开源知识库问答系统,旨在帮助企业、教育机构及研究组织高效管理知识并提供智能问答服务。一、前期准备工作首先,你需要再你的Windows电脑上安装DockerDesktop。本章教程,不介绍如何安装Docker。二、搜索镜像dockersearchmaxkb
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&