- C++使用ZeroMQ和MessagePack实现简单又轻量级的RPC框架
特立独行的猫a
C++c++rpczeromqmessagepack
在现代的分布式系统中,远程过程调用(RPC)是一个非常重要的机制,它允许不同的服务或组件之间的通信,就像调用本地函数一样。本文将介绍如何使用ZeroMQ和MessagePack来构建一个轻量级的RPC框架,并提供一个简单的使用示例。ZeroMQ简介ZeroMQ(也称为0MQ)是一个高性能的异步消息库,旨在使用标准的、对等的传输协议实现消息的发送与接收。ZeroMQ的核心是提供一个消息队列,使得消息
- 深度好文 图解 RocketMQ 的系统架构
橘野禾
系统架构kafkajava分布式后端
今天给大家分享一篇学习RocketMQ系统架构核心知识点的梳理和总结,在讲解时力求精简、通俗易懂,通过图解来给正在学习RocketMQ的小伙伴带来帮助。RocketMQ是阿里巴巴的分布式消息中间件,在2012年开源,在2017年成为Apache顶级项目。1集群架构RocketMQ的集群架构如下图:从上图可以看到,整个集群中有四个角色:NameServer集群、Broker主从集群、Producer
- Elastic Stack 8.16.0 日志收集平台的搭建
JingAi_jia917
ElastisearchLogstashFilebeatKibanaElasticstackELK日志平台
简介1.1ELK介绍ELK是Elasticsearch、Logstash、Kibana三款开源工具的首字母缩写,构成了一套完整的日志管理解决方案,主要用于日志的采集、存储、分析与可视化。1)Logstash:数据管道工具,负责从多种来源(如文件、数据库、消息队列)采集日志,进行过滤、格式化后输出到目标(如Elasticsearch);2)Elasticsearch:分布式实时搜索与
- Java多线程与并发编程实战——从基础到进阶
AI天才研究院
Python实战Java实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介互联网企业都在大力拓展自己的业务,而新的技术革命也带来了海量的数据量,因此,单机并发处理能力已经无法满足现代信息时代对高速数据的需求。大数据和云计算带来的分布式系统架构,让单台计算机不仅能够执行单个任务,而且可以横向扩展处理大量任务。在这种情况下,如何充分利用多核CPU、共享内存等资源并发地处理多项任务就成为现代系统设计者们必备技能之一。本书将以实操为导向,全面
- 【云原生技术】如何在一次远程连接里依次执行多条命令,并在每条命令执行后立即将“成功/失败”及对应的输出反馈回来
阿寻寻
云原生&DevOps网络服务器java
一次远程连接里依次执行多条命令,并在每条命令执行后立即将“成功/失败”及对应的输出反馈回来1.**为每条命令分别重定向输出**到不同日志文件:2.**检查上一条命令的退出码**(`$?`):3.**根据执行结果**分别打印对应的日志文件:要点说明如果需要在一次远程连接里依次执行多条命令,并在每条命令执行后立即将“成功/失败”及对应的输出反馈回来,可以使用以下思路:1.为每条命令分别重定向输出到不同
- Dubbo请求调用本地服务
Lorin 洛林
Java后端经典面试题dubbo
文章目录前言配置Dubbo本地调用方法一:application.yml中配置方法二:@DubboReference注解中指定注意个人简介前言在微服务架构中,ApacheDubbo作为一款高性能、轻量级的RPC框架,被广泛应用于分布式系统。通常,Dubbo服务是跨进程调用的,但在开发和测试过程中,有时需要在本地调用Dubbo服务,以方便调试和验证。配置Dubbo本地调用默认情况下,Dubbo通过注
- 程序员必看!DeepSeek全栈开发指南:从代码生成到分布式训练的黑科技解析
AI创享派
后端
一、DeepSeek技术新突破:程序员必须掌握的MoE架构实战2025年2月25日,DeepSeek开源了专为MoE模型设计的DeepEP通信库,这项技术革新直接影响了分布式训练和推理效率。该库支持FP8精度与NVLink/RDMA技术,吞吐量提升3倍以上,特别适合处理千亿级参数的分布式任务。对于后端工程师而言,DeepEP的以下特性值得关注:计算-通信重叠机制:通过回调函数实现GPU资源动态分配
- Liunx启动kafka并解决kafka时不时挂掉的问题
RyFit
linuxkafka
kafka启动步骤先启动zookeeper,启动命令如下nohup./zookeeper-server-start.sh/home/kafka/kafka/config/zookeeper.properties>/home/kafka/kafka/zookeeper.log2>&1&再启动kafka,启动命令如下nohup./kafka-server-start.sh/home/kafka/kaf
- Redis 常用数据类型
27xixi
java技术栈redis数据库缓存
Redis常用数据类型的详细介绍及其典型应用场景:String(字符串)描述:最基本的数据类型,可存储文本、数字或二进制数据(最大512MB)。常用命令:SETkeyvalue:设置值GETkey:获取值INCRkey:将值自增1(原子性操作)EXPIREkeyseconds:设置过期时间应用场景:缓存简单键值对(如用户会话、配置项)。计数器(如文章阅读量、库存扣减)。分布式锁(结合SETNX命令
- 安科瑞ACCU-100微电网协调控制器:助力绿色能源系统运行
安科瑞蒋静
能源
随着全球能源结构的转型和可再生能源的快速发展,微电网作为一种新型的电力系统,逐渐成为解决分布式能源接入、提高能源利用效率的重要手段。微电网不仅能够实现新能源的就地消纳,还能有效提高电网的稳定性和可靠性。在这一背景下,安科瑞电气股份有限公司推出的ACCU-100微电网协调控制器,凭借其强大的功能和灵活的配置,成为微电网系统中的核心控制设备。一、产品概述ACCU-100微电网协调控制器是一款应用于微电
- 【云原生】动态资源分配(DRA)深度洞察报告
碣石潇湘无限路
云原生
1.DRA的发展与设计灵感Kubernetes早期通过DevicePlugin(设备插件)机制支持GPU、NIC等特殊硬件,将节点上可用设备数量上报给kubelet和调度器。但设备插件模式存在局限:调度器只能根据节点标签等属性粗粒度筛选,无法精准指定某型号/属性的设备;此外调度器与设备插件缺乏联动,可能把Pod调度到尚未准备好相应设备的节点上。结果就是难以满足复杂场景下对特定硬件的精细化需求。为解
- RocketMQ、Kafka、RabbitMQ,如何选型?
大梦谁先觉i
中间件SpringbootSpringCloudrocketmqkafkarabbitmq
如何根据应用场景选择合适的消息中间件?分布式、微服务、高并发架构中,消息队列(MessageQueue,简称MQ)扮演着至关重要的角色。消息队列用于实现系统间的异步通信、解耦、削峰填谷等功能。目前常见的MQ实现包括RabbitMQ、RocketMQ和Kafka。RocketMQ、Kafka、RabbitMQ如何选择?三大MQ的简单对比特性RabbitMQRocketMQKafka公司/社区Rabb
- ELK traceId 通过A服务调用B服务举例
C18298182575
elkhivehadoop
在分布式系统中,traceId需要在服务之间传递,以确保整个请求链路的日志能够被追踪。下面我们通过一个具体的例子,展示如何通过A服务调用B服务时传递traceId,并确保日志中能够正确记录traceId。实现思路A服务生成traceId:在A服务的HandlerInterceptor中生成traceId,并将其放入MDC。A服务调用B服务时传递traceId:在A服务调用B服务时,将traceId
- 【云原生】深入浅出 K8s 设备插件技术(Device Plugin)
碣石潇湘无限路
kubernetes容器云原生
摘要:Kubernetes提供了DevicePlugin机制,用于向kubelet上报硬件信息并配置容器资源。本文以NVIDIAGPUPlugin为例,通俗易懂并深入浅出地剖析注册、ListAndWatch、Allocate及kubelet管理流程,介绍常见问题和配置要点。先用一张原理概览图把DevicePlugin和kubelet之间的交互勾勒出来,让大家感受下插件技术的整体架构(示例以NVID
- 分布式系统中分布式ID生成方案的技术详解
心存の思念
分布式
分布式系统中分布式ID生成方案的技术详解在复杂的分布式系统中,数据被分散存储在不同的节点上,每个节点都有自己独立的数据库。为了保证数据的唯一性和一致性,我们需要为每个数据项生成一个全局唯一的主键ID。本文将详细解析几种常用的分布式ID生成方案,包括它们的工作原理、优缺点以及适用场景。一、分布式系统唯一ID的特点全局唯一性:不能出现重复的ID号,这是最基本的要求。趋势递增:在MySQLInnoDB引
- 在MATLAB中进行并行计算和GPU加速?
琛哥的程序
网络服务器人工智能
在MATLAB中进行并行计算和GPU加速是提升计算性能和处理大规模数据集的重要手段。下面将详细介绍如何在MATLAB中实现这些技术。一、并行计算MATLAB提供了并行计算的功能,可以充分利用多核处理器和分布式计算资源,显著提高代码执行效率。在MATLAB中进行并行计算的主要工具有ParallelComputingToolbox和parfor循环。ParallelComputingToolboxPa
- AUTOSAR从入门到精通-汽车电子电气架构(EEA)
格图素书
汽车
目录前言算法原理EEA发展历程->分布式架构(distributed):->基于域的集中式架构(DCUbasedcentralized):->基于域融合的带状架构(DCUfusionbasedzonal):什么是电子电气架构?EEA的特点EEA发展的三大阶段特征第一阶段:分布式架构第二阶段:基于域的集中式架构(转型中)第三阶段:基于域融合的带状架构(未来趋势)车载电子电气架构作用EEA开发工作内容
- 物联网设备数据流转之搭建环境:开源高性能分布式支持SQL的时序数据库TDengine
Heartsuit
时序数据库物联网分布式TDengine涛思数据
背景我们的项目涉及物联网相关业务,由于一开始的年少无知,传感器数据采用了MySQL进行存储,经过近两年的数据累积,目前几个核心表,单表数据已过亿,虽然通过索引优化、SQL优化以及读写分离等措施,勉强满足基本的查询,能在秒级给出数据;但是一方面当前MySQL数据表索引的大小甚至超过了数据大小,这样下去肯定不行;另一方面来自于前端感知设备的数据量还在持续增加,当面对用户多维度的统计需求,在实现上、效率
- Kafka 生产者与消费者的关系与应用场景分析
白.夜
kafkajson
在现代分布式系统中,ApacheKafka作为一个高性能的消息队列系统,在数据流转和处理方面扮演着至关重要的角色。Kafka采用了经典的生产者-消费者模式,极大地解耦了数据生成与数据消费的过程。本文将详细探讨Kafka中生产者与消费者的关系、常见问题以及Kafka在实际应用中的使用场景。1.Kafka中生产者与消费者的关系1.1生产者(Producer)生产者是Kafka系统中的一个客户端应用程序
- LLMs之Colossal-LLaMA-2:源码解读(train.py文件)基于给定数据集实现持续预训练LLaMA-2—解析命令行参数→初始化配置(分布式训练环境colossalai+训练日志+加速插
一个处女座的程序猿
NLP/LLMs精选(人工智能)-中级Colossal-AILLaMA-2大语言模型自然语言处理
LLMs之Colossal-LLaMA-2:源码解读(train.py文件)基于给定数据集实现持续预训练LLaMA-2—解析命令行参数→初始化配置(分布式训练环境colossalai+训练日志+加速插件)→数据预处理(初始化分词器+数据处理器+数据加载器)→模型训练(初始化模型/优化器/学习率调度器/梯度检查点/Flash-Attention/设置数据类型/是否加载预训练模型/从上一次训练点继续训
- Git的详细使用方法
QMT量化交易
Pythongit
Git是一个分布式版本控制系统,用于跟踪和管理代码的变更。以下是Git的详细使用方法:1.安装GitWindows:从Git官网下载安装包。Linux(Ubuntu/Debian)sudoaptinstallgitmacOS:使用Homebrew。brewinstallgit验证安装git--version2.配置用户信息首次使用首次使用时,Git前需配置全局用户名和邮箱:gitconfig--g
- springboot kafka spring boot搭建 单机 集群 集成入门
木秀林
环境配置kafkaspringbootdocker
搭建kafka(单机版)使用虚拟机+docker参考https://blog.csdn.net/qq_35394891/article/details/84349955https://www.cnblogs.com/xiaohanlin/p/10078865.html拉取镜像(kafka依赖zookeeper,所有两个都要)dockerpullwurstmeister/zookeeperdocke
- 【Kubernetes】Kubernetes 容器集群管理系统概述
码农鑫哥的日常
kubernetes容器云原生1024程序员节
目录前言什么是云原生?容器编排介绍云原生容器云容器编排云平台SRE一、Kubernetes概述1.1K8S是什么?1.1.1作用1.2为什么要用K8S?1.2.1K8s目标1.2.2K8s对于docker的优势1.2.3K8s功能1.2.4K8s特性1.2.4.1弹性伸缩1.2.4.2自我修复1.2.4.3服务发现和负载均衡1.2.4.4自动发布(默认滚动发布模式)和回滚1.2.4.5集中化配置管
- 软件2.0的无服务器计算架构
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《软件2.0的无服务器计算架构》关键词无服务器计算软件架构软件2.0事件驱动函数编程微服务云原生摘要本文深入探讨了软件2.0时代的无服务器计算架构。首先,我们回顾了无服务器计算的兴起背景,与传统服务器计算的区别,以及其设计理念。接着,介绍了主流的无服务器平台,并探讨了无服务器计算在软件2.0中的应用。随后,我们详细阐述了无服务器计算的核心技术,包括事件驱动架构、编写无服务器函数、无服务器数据库和无
- 六月份阶段性大总结之Doris/Clickhouse/Hudi一网打尽
王知无(import_bigdata)
大数据编程语言人工智能java数据分析
点击上方蓝色字体,选择“设为星标”回复"面试"获取更多惊喜全网最全大数据面试提升手册!这是个阶段性小总结,后面会持续更新。ClickHouse「Clickhouse系列」分布式表&本地表详解「ClickHouse系列」ClickHouse之MergeTree原理「ClickHouse系列」Replication机制详解「ClickHouse系列」ClickHouseSQL基本语法和导入导出实战「C
- HarmonyNext实战:基于ArkTS的高性能分布式任务调度系统开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能分布式任务调度系统开发引言在HarmonyNext生态系统中,分布式任务调度是一个复杂且关键的技术领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的分布式任务调度系统,涵盖从基础概念到高级优化的完整流程。我们将通过一个实际的案例——分布式计算任务调度系统,来展示如何在HarmonyNext平台上实现高效的任务调度。1.项目概述1.1目标开发
- HarmonyNext实战:基于ArkTS的跨设备分布式数据同步应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的跨设备分布式数据同步应用开发引言在分布式系统的开发中,跨设备数据同步是一个极具挑战性的问题。随着HarmonyOSNext的发布,ArkTS作为其核心开发语言,为开发者提供了强大的分布式能力。本文将深入探讨如何利用ArkTS在HarmonyNext平台上开发一个跨设备分布式数据同步应用。我们将从分布式数据管理的基础理论出发,逐步构建一个完整的应用,涵盖数
- springboot 整合 elk (Elasticsearch+Logstash+Kibana)
高大王竟然被注册
spring运维
Elasticsearch是个开源分布式搜索引擎,它的特点有:分布式,零配置,自动发现,索引自动分片,索引副本机制,restful风格接口,多数据源,自动搜索负载等。Logstash是一个完全开源的工具,他可以对你的日志进行收集、过滤,并将其存储供以后使用(如,搜索)。Kibana也是一个开源和免费的工具,它Kibana可以为Logstash和ElasticSearch提供的日志分析友好的Web界
- 分布式光伏监控系统设计
能源数字化创业者
分布式能源管理
一、产品简介快控光伏运维云平台软件是针对工商业分布式光伏电站设计研发的一款集控管理系统。他通过智能网关采集现场逆变器、气象站、综合测控装置等各类设备的运行数据和状态,实现对光伏电站的24小时实时在线监控诊断,有效的保障了电站的安全运行。同时系统拉通线上线下运维,可极大的提高电站的运维的效率和质量。该平台软件主要有以下几大功能:1、实时在线监控,实时故障监测,第一时间通知电站运维人员及时消除隐患,确
- 分布式光伏电站经济性指标优化分析
罗思付之技术屋
网络通信安全及科学技术专栏分布式
摘要结合工程经验,分析了工商业分布式光伏电站平准发电成本(LevelizedCostofEnergy,LCOE)、资本金内部收益率(InternalRateofReturn,IRR)的主要影响因素,其中平准发电成本主要受静态投资影响,资本金内部收益率主要受消纳比影响。针对上述影响因素,进一步讨论了LCOE、IRR指标优化方法与在工程项目中可选用的举措。最后,结合实际项目背景,在站址条件、组件瓦单价
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不