Spark SQL 内置函数

文章目录

  • 一、Spark SQL内置函数
    • (一)内置函数概述
      • 1、10类内置函数
      • 2、两种使用方式
    • (二)内置函数演示
      • 1、通过编程方式使用内置函数upper()
      • 2、通过SQL语句的方式使用内置函数upper()
      • 3、演示其它内置函数的使用
  • 二、自定义函数
    • (一)自定义函数概述
    • (二)演示自定义函数
      • 1、提出任务:手机号保密
      • 2、编写程序,完成任务
  • 三、自定义聚合函数
    • (一)自定义聚合函数概述
    • (二)演示自定义聚合函数
      • 1、提出任务:实现求员工平均工资功能的UDAF
      • 2、编写程序,完成任务
  • 四、开窗函数
    • (一)开窗函数概述
    • (二)开窗函数使用格式
    • (三)开窗函数案例演示
      • 1、提出任务:统计前3名
      • 2、编写程序,实现功能,完成任务


一、Spark SQL内置函数

(一)内置函数概述

1、10类内置函数

Spark SQL内置了大量的函数,位于API org.apache.spark.sql.functions中。这些函数主要分为10类:UDF函数、聚合函数、日期函数、排序函数、非聚合函数、数学函数、混杂函数、窗口函数、字符串函数、集合函数,大部分函数与Hive中相同。

2、两种使用方式

使用内置函数有两种方式:一种是通过编程的方式使用;另一种是在SQL语句中使用。

(二)内置函数演示

读取HDFS上的people.json,得到数据帧,执行命令:val peopleDF = spark.read.json(“hdfs://master:9000/datasource/input/people.json”)
Spark SQL 内置函数_第1张图片
显示数据帧内容,执行命令:peopleDF.show()
Spark SQL 内置函数_第2张图片
导入Spark SQL内置函数,执行命令:import org.apache.spark.sql.functions._
Spark SQL 内置函数_第3张图片

1、通过编程方式使用内置函数upper()

利用upper()函数将姓名转成大写,执行命令:peopleDF.select(upper(col(“name”)).as(“name”)).show()
Spark SQL 内置函数_第4张图片
上述代码中,使用select()方法传入需要查询的列,使用as()方法指定列的别名。代码col(“name”)指定要查询的列,也可以使用 $"name" 代替,但是需要导入import spark.implicits._,执行命令:peopleDF.select(upper($"name").as("name")).show()
Spark SQL 内置函数_第5张图片
对某列使用了内置函数,如果还要显示其它列,就会报错
Spark SQL 内置函数_第6张图片

2、通过SQL语句的方式使用内置函数upper()

定义临时视图,执行命令:peopleDF.createTempView("t_people")
在这里插入图片描述
执行命令:spark.sql(“select upper(name) as name from t_people”).show()
Spark SQL 内置函数_第7张图片
执行命令:spark.sql(“select upper(name) as name, age from t_people”).show()
Spark SQL 内置函数_第8张图片

3、演示其它内置函数的使用

打印Schema信息,执行命令:peopleDF.printSchema()
Spark SQL 内置函数_第9张图片
查询name列,执行命令:peopleDF.select(“name”).show()
Spark SQL 内置函数_第10张图片
可用SQL语句方式来完成同样的任务
Spark SQL 内置函数_第11张图片
查询name列和age列,其中将age列的值增加1,执行命令:peopleDF.select($"name", $"age" + 1).show()
Spark SQL 内置函数_第12张图片
可用SQL语句方式来完成同样的任务
Spark SQL 内置函数_第13张图片
查询年龄大于21的记录,执行命令:peopleDF.filter($"age" > 21).show()
Spark SQL 内置函数_第14张图片
可用SQL语句方式来完成同样的任务
Spark SQL 内置函数_第15张图片
根据age进行分组,并求每一组的数量,执行命令:peopleDF.groupBy("age").count().show()
Spark SQL 内置函数_第16张图片
可用SQL语句方式来完成同样的任务
Spark SQL 内置函数_第17张图片

二、自定义函数

(一)自定义函数概述

当Spark SQL提供的内置函数不能满足查询需求时,用户可以根据自己的业务编写自定义函数(User Defined Functions,UDF),然后在Spark SQL中调用。

(二)演示自定义函数

1、提出任务:手机号保密

有这样一个需求:为了保护用户的隐私,当查询数据的时候,需要将用户手机号的中间4位用星号()代替,比如手机号147***9205。这时就可以写一个自定义函数来实现这个需求。

2、编写程序,完成任务

创建SparkSQLUDF单例对象
Spark SQL 内置函数_第18张图片

package net.army.sql.day01

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{StringType, StructField, StructType}
import org.apache.spark.sql.{Row, SparkSession}

/**
 * 功能:演示自定义函数
 * 日期:2023年06月14日
 * 作者:梁辰兴
 */
object SparkSQLUDF {
  def main(args: Array[String]): Unit = {
    // 创建或得到SparkSession
    val spark = SparkSession.builder()
      .appName("SparkSQLUDF")
      .master("local[*]")
      .getOrCreate()

    // 第一步:创建测试数据(亦可读取文件)
    // 创建电话模拟数据
    val arr = Array("15892925678", "13567892345", "18034561290", "13967678901")
    // 将数组转换成RDD
    val rdd: RDD[String] = spark.sparkContext.makeRDD(arr)
    // 将RDD[String]转为RDD[Row]
    val rowRDD: RDD[Row] = rdd.map(line => Row(line))
    // 定义数据的schema
    val schema = StructType(
      List {
        StructField("phone", StringType, true)
      }
    )
    // 将RDD[Row]转为DataFrame
    val df = spark.createDataFrame(rowRDD, schema)

    // 第二步:创建自定义函数(phoneHide)
    val phoneUDF = (phone: String) => {
      var result = "手机号码错误!"
      if (phone != null && phone.length == 11) {
        val buffer = new StringBuffer()
        buffer.append(phone.substring(0, 3))
        buffer.append("****")
        buffer.append(phone.substring(7))
        result = buffer.toString
      }
      result
    }
    // 注册函数(第一个参数为函数名称,第二个参数为自定义的函数)
    spark.udf.register("phoneHide", phoneUDF)

    // 第三步:调用自定义函数
    // 创建临时视图
    df.createTempView("t_phone")
    // 查询表,调用自定义函数处理phone字段
    spark.sql("select phoneHide(phone) as phone from t_phone").show()
  }
}

上述代码通过spark.udf.register()方法注册一个自定义函数phoneHide,然后使用spark.sql()方法传入SQL语句,在SQL语句中调用自定义函数phoneHide并传入指定的列,该列的每一个值将依次被自定义函数phoneHide处理。

运行程序,查看结果
Spark SQL 内置函数_第19张图片

三、自定义聚合函数

(一)自定义聚合函数概述

Spark SQL提供了一些常用的聚合函数,如count()、countDistinct()、avg()、max()、min()等。此外,用户也可以根据自己的业务编写自定义聚合函数(User Defined AggregateFunctions,UDAF)。

UDF主要是针对单个输入返回单个输出,而UDAF则可以针对多个输入进行聚合计算返回单个输出,功能更加强大。

(二)演示自定义聚合函数

1、提出任务:实现求员工平均工资功能的UDAF

员工工资数据存储于HDFS上/input目录里的employees.json文件中
Spark SQL 内置函数_第20张图片

{"name", "Army", "salary": 3500}
{"name", "Brown", "salary": 4500}
{"name", "Alice", "salary": 3200}
{"name", "Jenny", "salary": 5500}
{"name", "Mike", "salary": 6500}

2、编写程序,完成任务

创建MyAverage类,继承UserDefinedAggregateFunction类

Spark SQL 内置函数_第21张图片

package net.army.sql.day01

import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types.{DataType, DoubleType, LongType, StructField, StructType}

/**
 * 功能:自定义聚合函数类,求平均值
 * 日期:2023年06月14日
 * 作者:梁辰兴
 */
class MyAverage extends UserDefinedAggregateFunction {
  // 聚合函数输入参数的类型,运行时会将需要聚合的每一个值输入聚合函数中
  // inputColumn为输入的列名,不做特殊要求,相当于一个列占位符
  override def inputSchema: StructType = StructType (
    List(StructField("inputColumn", LongType))
  )

  // 定义存储聚合运算产生的中间数据的Schema
  // sum和count不作特殊要求,为自定义名称
  override def bufferSchema: StructType = StructType(
    List(
      StructField("sum", LongType), // 参与聚合的数据总和
      StructField("count", LongType) // 参与聚合的数据数量
    )
  )

  // 定义数据类型
  override def dataType: DataType = DoubleType

  // 针对给定的同一组输入,聚合函数是否返回相同的结果,通常为true
  override def deterministic: Boolean = true

  // 初始化聚合运算的中间结果,中间结果存储于buffer中,buffer是一个Row类型
  override def initialize(buffer: MutableAggregationBuffer): Unit = {
    buffer(0) = 0L // 与bufferSchema中的第一个字段(sum)对应,即sum的初始值
    buffer(1) = 0L // 与bufferSchema中的第二个字段(count)对应,即count的初始值
  }

  // 由于参与聚合的数据会依次输入聚合函数,因此每当向聚合函数输入新的数据时,都会调用该函数更新聚合中间结果
  override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
    if (!input.isNullAt(0)) {
      buffer(0) = buffer.getLong(0) + input.getLong(0) // 更新参与聚合的数据总和
      buffer(1) = buffer.getLong(1) + 1 // 更新参与聚合的数据数量
    }
  }

  // 合并多个分区的buffer中间结果(分布式计算,参与聚合的数据存储于多个分区,每个分区都会产生buffer中间结果
  override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
    buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0) // 合并参与聚合的数据总和
    buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1) // 合并参与聚合的数据数量
  }

  // 计算最终结果,数据总和 / 数据数量 = 平均值
  override def evaluate(buffer: Row): Double = buffer.getLong(0).toDouble / buffer.getLong(1)
}

/**
 * 测试自定义聚合函数
 */
object MyAverage {
  def main(args: Array[String]): Unit = {
    // 创建或得到SparkSession
    val spark = SparkSession.builder()
      .appName("SparkSQLUDF")
      .master("local[*]")
      .getOrCreate()

    // 注册自定义聚合函数
    spark.udf.register("myAverage", new MyAverage)
    // 读取员工JSON数据
    val df = spark.read.json("hdfs://master:9000/input/employees.json")
    // 显示数据帧内容
    df.show()
    // 创建临时视图
    df.createOrReplaceTempView("employees")
    // 调用聚合函数进行查询
    val result = spark.sql("select myAverage(salary) as average_salary from employees")
    // 显示查询结果
    result.show()

    // 停止会话
    spark.toString
  }
}

四、开窗函数

(一)开窗函数概述

row_number()开窗函数是Spark SQL中常用的一个窗口函数,使用该函数可以在查询结果中对每个分组的数据,按照其排序的顺序添加一列行号(从1开始),根据行号可以方便地对每一组数据取前N行(分组取TOPN)。

(二)开窗函数使用格式

row_number() over (partition by 列名 order by 列名 desc) 行号列别名
partition by:按照某一列进行分组

order by:分组后按照某一列进行组内排序

desc:降序,默认升序

(三)开窗函数案例演示

1、提出任务:统计前3名

统计每一个产品类别的销售额前3名(相当于分组求TOPN)

2、编写程序,实现功能,完成任务

创建SparkSQLWindowFunctionDemo单例对象
Spark SQL 内置函数_第22张图片

package net.army.sql.day01

import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{Row, SparkSession}

/**
 * 功能:统计每一个产品类别的销售额前3名
 * 日期:2023年06月14日
 * 作者:梁辰兴
 */
object SparkSQLWindowFunctionDemo {
  def main(args: Array[String]): Unit = {
    // 创建或得到SparkSession
    val spark = SparkSession.builder()
      .appName("SparkSQLUDF")
      .master("local[*]")
      .getOrCreate()

    // 第一步:创建测试数据(字段:日期、产品类别、销售额)
    val arr = Array(
      "2022-05-10,A,710",
      "2022-05-10,B,530",
      "2022-05-10,C,670",
      "2022-05-11,A,520",
      "2022-05-11,B,730",
      "2022-05-11,C,610",
      "2022-05-12,A,500",
      "2022-05-12,B,700",
      "2022-05-12,C,650",
      "2022-05-13,A,620",
      "2022-05-13,B,690",
      "2022-05-13,C,700",
      "2022-05-14,A,720",
      "2022-05-14,B,680",
      "2022-05-14,C,590"
    )
    // 转为RDD[Row]
    val rowRDD = spark.sparkContext
      .makeRDD(arr)
      .map(line => Row(
        line.split(",")(0),
        line.split(",")(1),
        line.split(",")(2).toInt
      ))
    // 构建数据帧元数据
    val structType = StructType(
      List(
        StructField("date", StringType, true),
        StructField("type", StringType, true),
        StructField("money", IntegerType, true)
      ))
    // 将RDD[Row]转成数据帧
    val df = spark.createDataFrame(rowRDD, structType)

    // 第二步:使用开窗函数取每个类别的金额前3名
    // 创建临时视图
    df.createTempView("t_sales")
    // 执行SQL查询,显示每个类别排名
    spark.sql(
      """
        |select date, type, money,
        |        row_number() over (partition by type order by money desc) rank
        |        from t_sales
        |""".stripMargin
    ).show()

    // 执行SQL查询,取每个类别前3名
    spark.sql(
      """
        |select date, type, money, rank from
        |  (
        |     select date, type, money,
        |        row_number() over (partition by type order by money desc) rank
        |        from t_sales
        |  ) sale
        |where sale.rank <= 3
        |""".stripMargin
    ).show()
  }
}

运行程序,查看结果
Spark SQL 内置函数_第23张图片

你可能感兴趣的:(大数据处理,spark,sql,大数据)